【題目】“勾股定理”在西方被稱為“畢達(dá)哥拉斯定理”,三國時期吳國的數(shù)學(xué)家趙爽在《周髀算經(jīng)》中注釋了其理論證明,其基本思想是圖形經(jīng)過割補(bǔ)后面積不變.即通過如圖所示的“弦圖”,將勻股定理表述為:“勾股各自乘,并之,為弦實,開方除之,即弦”(其中分別為勾股弦);證明方法敘述為:“按弦圖,又可以勾股相乘為朱實二,倍之為朱實四,以勾股之差自相乘為中黃實,加差實,亦成弦實”,即,化簡得.現(xiàn)已知,,向外圍大正方形區(qū)域內(nèi)隨機(jī)地投擲一枚飛鏢,飛鏢落在中間小正方形內(nèi)的概率是( )
A. B. C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓與直線相切且與圓外切。
(1)求圓心的軌跡的方程;
(2)設(shè)第一象限內(nèi)的點(diǎn)在軌跡上,若軸上兩點(diǎn),,滿足且. 延長、分別交軌跡于、兩點(diǎn),若直線的斜率,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),其中.證明:的圖象在圖象的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年在印度尼西亞日惹舉辦的亞洲乒乓球錦標(biāo)賽男子團(tuán)體決賽中,中國隊與韓國隊相遇,中國隊男子選手A,B,C,D,E依次出場比賽,在以往對戰(zhàn)韓國選手的比賽中他們五人獲勝的概率分別是0.8,0.8,0.8,0.75,0.7,并且比賽勝負(fù)相互獨(dú)立.賽會釆用5局3勝制,先贏3局者獲得勝利.
(1)在決賽中,中國隊以3∶1獲勝的概率是多少?
(2)求比賽局?jǐn)?shù)的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地區(qū)觀眾對大型綜藝活動《中國好聲音》的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾收看該節(jié)目的場數(shù)與所對應(yīng)的人數(shù)表:
將收看該節(jié)目場次不低于13場的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表
(2)此資料我們能否有95%的把握認(rèn)為“歌迷”與性別有關(guān)?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,,,對角線與交于點(diǎn),點(diǎn),分別在,上,滿足,交于點(diǎn).將沿折到的位置, .
(Ⅰ)證明:;
(Ⅱ)求與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知元集合的一些子集滿足:每個子集至少含2個元素,每兩個不同子集的交集至多含2個元素,記這些子集的元素個數(shù)的立方和為.問:是否存在不小于3的正整數(shù),使的最大值等于2009的方冪?說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】目前,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了解新冠肺炎傳播途徑,采取有效防控措施,某醫(yī)院組織專家統(tǒng)計了該地區(qū)500名患者新冠病毒潛伏期的相關(guān)信息,數(shù)據(jù)經(jīng)過匯總整理得到如圖所示的頻率分布直方圖(用頻率作為概率).潛伏期低于平均數(shù)的患者,稱為“短潛伏者”,潛伏期不低于平均數(shù)的患者,稱為“長潛伏者”.
(1)求這500名患者潛伏期的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),并計算出這500名患者中“長潛伏者”的人數(shù);
(2)為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否高于平均數(shù)為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述500名患者中抽取300人,得到如下列聯(lián)表,請將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有97.5%的把握認(rèn)為潛伏期長短與患者年齡有關(guān);
短潛伏者 | 長潛伏者 | 合計 | |
60歲及以上 | 90 | ||
60歲以下 | 140 | ||
合計 | 300 |
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市環(huán)保部門為了讓全市居民認(rèn)識到冬天燒煤取暖對空氣數(shù)值的影響,進(jìn)而喚醒全市人民的環(huán)保節(jié)能意識.對該市取暖季燒煤天數(shù)與空氣數(shù)值不合格的天數(shù)進(jìn)行統(tǒng)計分析,得出表數(shù)據(jù):
(天) | |||||
(天) |
(1)以統(tǒng)計數(shù)據(jù)為依據(jù),求出關(guān)于的線性回歸方程;
(2)根據(jù)(1)求出的線性回歸方程,預(yù)測該市燒煤取暖的天數(shù)為時空氣數(shù)值不合格的天數(shù).
參考公式:,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com