分析 (1)令f(x)=xt-1-t(x-1),x∈(0,1)時,xt-1≤1,f′(x)≤0,函數(shù)單調遞減;x>1時,f′(x)>0,函數(shù)單調遞增,得到x=1是f(x)的唯一極小值點,則f(x)≥f(1)=0,即可得證;
(2)分a=b和a≠b兩種情況證明結論,并構造函數(shù)φ(x)=xa-xb,先證得φ(x)是單調減函數(shù),進而得到結論.
解答 證明:(1)令f(x)=xt-1-t(x-1),f′(x)=t(xt-1-1),
∵t>1,∴t-1>0,
x∈(0,1)時,xt-1≤1,f′(x)≤0,函數(shù)單調遞減;x>1時,f′(x)>0,函數(shù)單調遞增,
∴x=1是f(x)的唯一極小值點,
∴f(x)≥f(1)=0,
即:xt≥1+t(x-1);
(2)當a=b,不等式顯然成立;
當a≠b時,不妨設a<b,
則aa+bb≥ab+ba?aa-ab≥ba-bb,
令φ(x)=xa-xb,x∈[a,b]
下證φ(x)是單調減函數(shù).
∵φ′(x)=axa-1-bxb-1=axb-1(xa-b-$\frac{a}$)
易知a-b∈(-1,0),1+a-b∈(0,1),$\frac{1}{1+a-b}$>1,
由(1)知當t>1,(1+x)t>1+tx,x∈[a,b],
∴$^{\frac{1}{1+a-b}}$=$[1+(b-1)]^{\frac{1}{1+a-b}}$>1+$\frac{b-1}{1+a-b}$=$\frac{a}{1+a-b}$>a,
∴b>a1+a-b,∴$\frac{a}$>aa-b≥xa-b,
∴φ'(x)<0,
∴φ(x)在[a,b]上單調遞減.
∴φ(a)>φ(b),
即aa-ab>ba-bb,
∴aa+bb>ab+ba.
綜上,aa+bb≥ab+ba成立.
點評 考查不等式的證明,考查運用導數(shù)判斷函數(shù)的單調性,證明不等式的方法,構造函數(shù)是解題的關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (3,-4) | B. | (3,4) | C. | (-3,-4) | D. | (-3,4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com