11.(理科)在(1-x2)(1+x)10的展開式中,x5的系數(shù)是132(用數(shù)字作答).

分析 (1-x2)(1+x)10=(1-x)(1+x)11,(1+x)11的通項公式:Tr+1=${∁}_{11}^{r}$xr,分別令r=5或4,即可得出.

解答 解:(1-x2)(1+x)10=(1-x)(1+x)11,(1+x)11的通項公式:Tr+1=${∁}_{11}^{r}$xr
令r=5或4,則x5的系數(shù)為-${∁}_{11}^{4}$×1+${∁}_{11}^{5}$=132.
故答案為:132.

點評 本題考查了二項式定理的應用,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.已知拋物線C:y2=2px(p>0)的焦點F到雙曲線$\frac{x^2}{3}-{y^2}$=1的漸近線的距離為1,過焦點F且斜率為k的直線與拋物線C交于A,B兩點,若$\overrightarrow{AF}=2\overrightarrow{FB}$,則k=$±2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知全集U=R,集合A={x|-1≤x≤1},B={x|x2-2x≤0},則(∁UA)∩B=( 。
A.[-1,0]B.[-1,2]C.(1,2]D.(-∞,1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)f(x)=logax在定義域內(nèi)單調(diào)遞增,則函數(shù)g(x)=loga(3-2x-x2)的單調(diào)遞增區(qū)間為(-3,-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.某班班會準備從含甲、乙、丙的7名學生中選取4人發(fā)言,要求甲、乙兩人至少有一個發(fā)言,且甲、乙都發(fā)言時丙不能發(fā)言,則甲、乙兩人都發(fā)言且發(fā)言順序不相鄰的概率為( 。
A.$\frac{1}{8}$B.$\frac{2}{17}$C.$\frac{3}{26}$D.$\frac{3}{28}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列有關(guān)命題的敘述錯誤的是( 。
A.對于命題p:?x∈R,x2+x+1<0,則¬p:?x∈R,x2+x+1≥0
B.若p∧q為假命題,則p,q均為假命題
C.命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
D.“x>2”是“x2-3x+2>0”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)y=2tan(3x-$\frac{π}{6}$)的最小正周期是( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.(1)已知t>1,x∈(0,+∞),證明:xt≥1+t(x-1);
(2)設(shè)0<a≤b<1,證明:aa+bb≥ab+ba

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知a∈R,函數(shù)f(x)=$\frac{1}{2}$ax2-lnx,討論f(x)的單調(diào)性.

查看答案和解析>>

同步練習冊答案