分析 (1)取BD的中點為O,連接OE,由角平分線的定義和兩直線平行的判定和性質(zhì),結(jié)合圓的切線的定義,即可得證;
(2)設(shè)△BDE的外接圓的半徑為r,運用直角三角形的勾股定理,和直角三角形的性質(zhì),即可得到所求EC的長.
解答 解:(1)證明:取BD的中點為O,連接OE,
由BE平分∠ABC,可得∠CBE=∠OBE,
又DE⊥EB,即有OB=OE,可得∠OBE=∠BEO,
可得∠CBE=∠BEO,即有BC∥OE,
可得∠AEO=∠C=90°,
則直線AC與△BDE的外接圓相切;
(2)設(shè)△BDE的外接圓的半徑為r,
在△AOE中,OA2=OE2+AE2,
且$AD=2\sqrt{3},AE=6$
即(r+2$\sqrt{3}$)2=r2+62,
解得r=2$\sqrt{3}$,OA=4$\sqrt{3}$,
由OA=2OE,可得∠A=30°,∠AOE=60°,
可得∠CBE=∠OBE=30°,BE=2rsin60°=$\sqrt{3}$r,
則EC=$\frac{1}{2}$BE=$\frac{1}{2}$•$\sqrt{3}$r=$\frac{1}{2}$×$\sqrt{3}$×2$\sqrt{3}$=3.
點評 本題考查圓的切線的定義,內(nèi)角平分線的定義和勾股定理的運用,考查推理能力和運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0] | B. | {-e} | C. | (-∞,-e] | D. | (-e,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com