在平面直角坐標(biāo)系xOy中,已知直線l經(jīng)過點P(
1
2
,1),傾斜角α=
π
6
,在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,以原點O為極點,以x軸正半軸為極軸)中,圓C的極坐標(biāo)方程為ρ=2
2
cos(θ-
π
4
).
(Ⅰ)寫出直線l的參數(shù)方程,并把圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)l與圓C相交于A,B兩點,求|PA|+|PB|的值.
考點:參數(shù)方程化成普通方程
專題:計算題,坐標(biāo)系和參數(shù)方程
分析:(Ⅰ)根據(jù)直線參數(shù)方程的一般式,即可寫出,化簡圓的極坐標(biāo)方程,運用ρcosθ=x,ρsinθ=y,即可普通方程;
(Ⅱ)將直線的參數(shù)方程代入到圓的方程中,得到關(guān)于t的方程,運用韋達(dá)定理,以及參數(shù)t的幾何意義,即可求出結(jié)果.
解答:解:( I)直線l的參數(shù)方程為
x=
1
2
+tcos
π
6
y=1+tsin
π
6
(t為參數(shù)),
x=
1
2
+
3
2
t
y=1+
1
2
t
(t為參數(shù)).
ρ=2
2
cos(θ-
π
4
)
得:ρ=2cosθ+2sinθ,
∴ρ2=2ρcosθ+2ρsinθ,∴x2+y2=2x+2y,
故圓C的直角坐標(biāo)方程為(x-1)2+(y-1)2=2.
( II)把
x=
1
2
+
3
2
t
y=1+
1
2
t
代入(x-1)2+(y-1)2=2得t2-
3
2
t-
7
4
=0
,
t1+t2=
3
2
,t1t2=-
7
4
,
∴|PA|+|PB|=|t1-t2|=
(t1+t2)2-4t1t2
=
31
2
點評:本題考查直線的參數(shù)方程、以及極坐標(biāo)方程與普通方程的互化,同時考查直線參數(shù)方程的運用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

參數(shù)方程
x=
1+sinθ
y=cos2(
π
4
-
θ
2
)
,(θ為參數(shù),0≤θ<2π)所表示的曲線是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將圓x2+y2=1上每一點的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,得曲線C.
(Ⅰ)寫出C的參數(shù)方程;
(Ⅱ)設(shè)直線l:2x+y-2=0與C的交點為P1,P2,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,求過線段P1P2的中點且與l垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(
π
3
-θ)=
3
2
,曲線C的參數(shù)方程為
x=1+cosα
y=sinα
(α為參數(shù),0≤α≤π)
(Ⅰ)寫出直線l的直角坐標(biāo)方程;
(Ⅱ)求直線l與曲線C的交點的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

長為3的線段兩端點A,B分別在x軸正半軸和y軸的正半軸上滑動,
BP
=2
PA
,點P的軌跡為曲線C.
(Ⅰ)以直線AB的傾斜角α為參數(shù),求曲線C的參數(shù)方程;
(Ⅱ)求點P到點D(0,-2)距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的參數(shù)方程為
x=2cost
y=2sint
(t為參數(shù)),曲線C在點(1,
3
)處的切線為l.以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,求l的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=1-x+lgx的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=acosax(a∈R).則下列圖象可能為y=f(x)的圖象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:人教A版(新課標(biāo)) 選修4-7 優(yōu)選法與試驗設(shè)計初步 題型:

的值是

[  ]

A.

-2

B.

2

C.

3

D.

-3

查看答案和解析>>

同步練習(xí)冊答案