設(shè)是兩條不同的直線,是兩個(gè)不重合的平面,給出下列四個(gè)命題:
①若∥,,則; ②若∥,,,則∥;
③若,,則∥; ④若,,,則.
其中真命題的序號(hào)為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,設(shè)P,Q為△ABC內(nèi)的兩點(diǎn),且, =+,則△ABP的面積與△ABQ的面積之比為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
解析 本題考查導(dǎo)數(shù)與函數(shù)的綜合運(yùn)用能力,涉及利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,第一問(wèn)關(guān)鍵是通過(guò)分析導(dǎo)函數(shù),從而確定函數(shù)的單調(diào)性,第二問(wèn)是利用導(dǎo)數(shù)及函數(shù)的最值,由恒成立條件得出不等式條件從而求出的范圍。
解析 (I)
由知,當(dāng)時(shí),,故在區(qū)間是增函數(shù);
當(dāng)時(shí),,故在區(qū)間是減函數(shù);
當(dāng)時(shí),,故在區(qū)間是增函數(shù)。
綜上,當(dāng)時(shí),在區(qū)間和是增函數(shù),在區(qū)間是減函數(shù)。
(II)由(I)知,當(dāng)時(shí),在或處取得最小值。
由假設(shè)知
即 解得 1<a<6
故的取值范圍是(1,6)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)
(Ⅰ)當(dāng)曲線處的切線斜率
(Ⅱ)求函數(shù)的單調(diào)區(qū)間與極值;
(Ⅲ)已知函數(shù)有三個(gè)互不相同的零點(diǎn)0,,且。若對(duì)任意的
,恒成立,求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù),.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
一個(gè)盒子里裝有標(biāo)號(hào)為1,2,3,…,n的n(n>3,且n∈N*)張標(biāo)簽,現(xiàn)隨機(jī)地從盒子里無(wú)放回地抽取兩張標(biāo)簽,記X為這兩張標(biāo)簽上的數(shù)字之和,若X=3的概率為. (1)求n的值; (2)求X的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓:過(guò)兩點(diǎn) ,拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,準(zhǔn)線方程為.
(1)求的標(biāo)準(zhǔn)方程;
(2)請(qǐng)問(wèn)是否存在直線滿足條件:①過(guò)的焦點(diǎn);②與交不同兩點(diǎn)且滿足直線與直線垂直?若存在,求出直線的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com