【題目】已知函數(shù)f(x)是定義在R上不恒為0的函數(shù),且對(duì)于任意的實(shí)數(shù)a,b滿(mǎn)足f(2)=2,f(ab)=af(b)+bf(a),an= (n∈N*),bn= (n∈N*),給出下列命題:
①f(0)=f(1);
②f(x)為奇函數(shù);
③數(shù)列{an}為等差數(shù)列;
④數(shù)列{bn}為等比數(shù)列.
其中正確的命題是 . (寫(xiě)出所有正確命題的序號(hào))

【答案】①②③④
【解析】解:∵取a=b=0,可得f(0)=0,
取a=b=1,可得f(1)=2f(1),即f(1)=0,
∴f(0)=f(1),
即①正確;
令a=b=﹣1,則f(1)=﹣f(﹣1)﹣f(﹣1)=0f(﹣1)=0,
令a=﹣1,則f(﹣b)=﹣f(b)+bf(﹣1)=﹣f(b)f(x)為奇函數(shù),
即②正確;
∵f(ab)=af(b)+bf(a),
∴f(2n)=f(22n1)=2f(2n1)+2n1f(2)
=2f(2n1)+2n=…=n2n ,
∴an= =n,bn= =2n ,
即有③④正確.
所以答案是:①②③④.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用數(shù)列的通項(xiàng)公式,掌握如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1, 中, ,點(diǎn)為線(xiàn)段的四等分點(diǎn),線(xiàn)段互相平行,現(xiàn)沿折疊得到圖2所示的幾何體,此幾何體的底面為正方形.

(1)證明: 四點(diǎn)共面;(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線(xiàn)l的參數(shù)方程為: (t為參數(shù),其中0<α< ),橢圓M的參數(shù)方程為 (β為參數(shù)),圓C的標(biāo)準(zhǔn)方程為(x﹣1)2+y2=1.
(1)寫(xiě)出橢圓M的普通方程;
(2)若直線(xiàn)l為圓C的切線(xiàn),且交橢圓M于A(yíng),B兩點(diǎn),求弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)定義在[0,1]上,并且同時(shí)滿(mǎn)足以下兩個(gè)條件的函數(shù)f(x)稱(chēng)為M函數(shù):
(i)對(duì)任意的x∈[0,1],恒有f(x)≥0;
(ii)當(dāng)x1≥0,x2≥0,x1+x2≤1時(shí),總有f(x1+x2)≥f(x1)+f(x2)成立.
則下列四個(gè)函數(shù)中不是M函數(shù)的個(gè)數(shù)是(
①f(x)=x2②f(x)=x2+1
③f(x)=ln(x2+1)④f(x)=2x﹣1.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=log (x2﹣2x)的單調(diào)遞增區(qū)間是(
A.(﹣∞,0)
B.(﹣∞,1)
C.(2,+∞)
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a>0, 是R上的偶函數(shù).
(1)求a的值;
(2)證明f(x)在(0,+∞)上為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知無(wú)窮數(shù)列的首項(xiàng), .

(Ⅰ)證明:

(Ⅱ) 記, 為數(shù)列的前項(xiàng)和,證明:對(duì)任意正整數(shù), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a,b∈R,且a≠2,定義在區(qū)間(﹣b,b)內(nèi)的函數(shù)f(x)=lg 是奇函數(shù).
(1)求a的值;
(2)求b的取值范圍;
(3)用定義討論并證明函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】紅隊(duì)隊(duì)員甲、乙、丙與藍(lán)隊(duì)隊(duì)員A、B、C進(jìn)行圍棋比賽,甲對(duì)A,乙對(duì)B,丙對(duì)C各一盤(pán),已知甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5,假設(shè)各盤(pán)比賽結(jié)果相互獨(dú)立.
(1)求紅隊(duì)至少兩名隊(duì)員獲勝的概率;
(2)用ξ表示紅隊(duì)隊(duì)員獲勝的總盤(pán)數(shù),求ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

同步練習(xí)冊(cè)答案