8.sin(-1665°)的值是( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$-\frac{{\sqrt{2}}}{2}$D.$-\frac{1}{2}$

分析 直接利用誘導公式以及特殊角的三角函數(shù)求解即可.

解答 解:sin(-1665°)=sin(-1800°+135°)=sin135°=$\frac{\sqrt{2}}{2}$.
故選:B.

點評 本題考查誘導公式以及特殊角的三角函數(shù)化簡求值,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.定義在R上的函數(shù)f(x)滿足:f(-x)=f(x),且f(x+2)=f(x),當x∈[-1,0]時,f(x)=($\frac{1}{2}$)x-1,若在區(qū)間[-1,5]內(nèi)函數(shù)F(x)=f(x)-logax有三個零點,則實數(shù)a的取值范圍為(  )
A.($\frac{1}{2}$,2)B.(1,5)C.(2,3)D.(3,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=ln($\sqrt{{x}^{2}+1}+x$)
(1)證明:函數(shù)f(x)=ln($\sqrt{{x}^{2}+1}+x$)在定義域R上為增函數(shù);
(2)若函數(shù)g(x)=f(x)+2x-2-x滿足g(3a-1)+g(a-3)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知|$\overrightarrow{a}$|=7,|$\overrightarrow$|=2,且$\overrightarrow{a}$∥$\overrightarrow$,則|$\overrightarrow{a}$-$\overrightarrow$|=5或9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.底面是正三角形且側棱和底面垂直的三棱柱ABC-A1B1C1的側棱長為3,底面邊長為1,沿側面從A點經(jīng)過棱BB1上的M點再經(jīng)過棱CC1上的N點到A1點.當所經(jīng)路徑AM-MN-NA1最短時,AM與A1N所成的角的余弦值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖,在矩形ABCD中,AB=1,BC=2,E為BC的中點,點F在DC邊上,則$\overrightarrow{AE}•\overrightarrow{AF}$的最大值為(  )
A.3B.4C.5D.與F點的位置有關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.點P是底邊長為2$\sqrt{3}$,高為2的正三棱柱表面上的動點,Q是該棱柱內(nèi)切球表面上的動點,則|PQ|的取值范圍是(  )
A.[0,$\sqrt{3}+1$]B.[0,$\sqrt{5}+1$]C.[0,3]D.[1,$\sqrt{5}+1$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.(1)已知關于x的二次函數(shù)f(x)=ax2-4bx+1.設集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
(2)在區(qū)間[1,5]和[2,4]上分別取一個數(shù),記為a,b,求方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1表示焦點在x軸上且離心率小于$\frac{\sqrt{3}}{2}$的橢圓的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.命題“?x∈R,x2-x+1>0”的否定是( 。
A.?x0∈R  x02-x0+1<0B.?x0∈R  x02-x0+1≤0
C.?x∈R  x2-x+1<0D.?x∈R  x2-x+1≤0

查看答案和解析>>

同步練習冊答案