分析 (1)先根據(jù)函數(shù)奇偶性的定義,可得函數(shù)f(x)為奇函數(shù),再根據(jù)函數(shù)單調(diào)性的性質(zhì),和函數(shù)奇偶性的性質(zhì),可得函數(shù)f(x)=ln($\sqrt{{x}^{2}+1}+x$)在定義域R上為增函數(shù);
(2)令函數(shù)h(x)=2x-2-x,可得函數(shù)h(x)也為奇函數(shù),且在R上為增函數(shù),進(jìn)而可得g(x)為奇函數(shù),且在R上為增函數(shù),進(jìn)而轉(zhuǎn)化不不等式g(3a-1)+g(a-3)>0為整式不等式,可得結(jié)論.
解答 證明:(1)∵函數(shù)f(x)=ln($\sqrt{{x}^{2}+1}+x$),
∴f(-x)=ln($\sqrt{{x}^{2}+1}-x$)=ln$\frac{1}{\sqrt{{x}^{2}+1}+x}$=-ln($\sqrt{{x}^{2}+1}+x$)=-f(x),
故函數(shù)f(x)為奇函數(shù),
當(dāng)x≥0時(shí),t=$\sqrt{{x}^{2}+1}+x$為增函數(shù),y=lnt為增函數(shù),
故函數(shù)f(x)=ln($\sqrt{{x}^{2}+1}+x$)也為增函數(shù),
再由奇函數(shù)在對(duì)稱(chēng)區(qū)間上單調(diào)性一致,
可得當(dāng)x≤0時(shí),函數(shù)f(x)=ln($\sqrt{{x}^{2}+1}+x$)也為增函數(shù),
綜上可得:函數(shù)f(x)=ln($\sqrt{{x}^{2}+1}+x$)在定義域R上為增函數(shù);
(2)令函數(shù)h(x)=2x-2-x,
則h(-x)=2-x-2x=-(2x-2-x)=-h(x),
故函數(shù)h(x)也為奇函數(shù),
當(dāng)x≥0時(shí),t=2x為增函數(shù),s=2-x為減函數(shù),
故h(x)=2x-2-x為增函數(shù),
再由奇函數(shù)在對(duì)稱(chēng)區(qū)間上單調(diào)性一致,
可得當(dāng)x≤0時(shí),函數(shù)h(x)=2x-2-x也為增函數(shù),
又由函數(shù)g(x)=f(x)+2x-2-x,
故函數(shù)g(x)為奇函數(shù),且在R上為增函數(shù),
若g(3a-1)+g(a-3)>0,
則g(3a-1)>-g(a-3),
即g(3a-1)>g(3-a),
即3a-1>3-a,
解得:a>1
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)單調(diào)性的判定與證明,對(duì)數(shù)函數(shù)的圖象和性質(zhì),函數(shù)的奇偶性,是函數(shù)圖象和性質(zhì)的綜合應(yīng)用,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (7,3) | B. | (3,3) | C. | (7,3)或(-3,3) | D. | (-7,3)或(3,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 2$\sqrt{2}$ | C. | $\sqrt{10}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $-\frac{{\sqrt{2}}}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com