5.已知集合A={a,$\frac{a}$,1},B={a2,a+b,0},若A=B,求a2012+b2013的值.

分析 由集合相等的概念求出a,b的值,然后代入要計算的式子求值.

解答 解:由集合A={a,$\frac{a}$,1},B={a2,a+b,0},
若A=B,{a,$\frac{a}$,1}={a2,a+b,0},得
a≠0,所以b=0,
則$\left\{\begin{array}{l}{{a}^{2}=a}\\{a+b=a}\end{array}\right.$①或$\left\{\begin{array}{l}{{a}^{2}=a}\\{a+b=1}\end{array}\right.$②
解①得,a=-1,b=0,
解②得,a=0或a=1,此時不合題意.
所以a=-1,b=0.
所以a2012+b2013=(-1)2012+02103=1.
故答案為:1.

點評 本題考查了集合相等的概念,考查了集合中元素的互異性,是基礎(chǔ)題,也是易錯題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.銳角α,β滿足cosα=$\frac{12}{13}$,cos(2α+β)=$\frac{3}{5}$,那么sin(α+β)=(  )
A.$\frac{63}{65}$B.$\frac{53}{65}$C.$\frac{33}{65}$D.$\frac{33}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.求函數(shù)y=-2x2+8x-6的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁UB)∪A=R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知集合A={a+3,(a+1)2,a2+2a+2},若1∉A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在△ABC中,已知AB=3,BC=2,D在AB上,$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$,若$\overrightarrow{DB}$•$\overrightarrow{DC}$=3,則AC的長是$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知平面向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|=2,則|2$\overrightarrow$-$\overrightarrow{a}$|=2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=$\frac{x+2}{x+1}$的圖象為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知數(shù)列{an}滿足an+1=an+$\frac{1}{{2}^{n}}$,a1=1,則an=( 。
A.2(1-$\frac{1}{{2}^{n}}$)B.2(1+$\frac{1}{{2}^{n}}$)C.2($\frac{1}{{2}^{n}}$-1)D.2($\frac{1}{{2}^{n}}$+1)

查看答案和解析>>

同步練習(xí)冊答案