1.已知⊙O是邊長為2的正方形ABCD的內(nèi)切圓,P是⊙O上任意一點,則AP+$\sqrt{2}$BP的最小值為$\sqrt{5}$.

分析 連接OA、OE、OB,OB交⊙O于點P,此時BP+$\frac{\sqrt{2}}{2}$AP的值最;由⊙O是正方形ABCD的內(nèi)切圓得出BE=OE=OP=$\frac{1}{2}$BC=1,OE⊥BC,OA⊥OB,OB=OA=$\sqrt{2}$BE=$\sqrt{2}$,得出BP,由勾股定理求出AP,即可得出結(jié)果.

解答 解:如圖所示:
取AO的中點F
所以$\frac{PO}{FO}$=$\frac{AO}{PO}$=$\sqrt{2}$,又∠POF=∠AOP
所以△POF~△AOP
所以PF=$\frac{\sqrt{2}}{2}$AP,
所以F,P,B三點共線時BP+$\frac{\sqrt{2}}{2}$AP取最小值為$\frac{\sqrt{10}}{2}$.
所以$\sqrt{2}$(BP+$\frac{\sqrt{2}}{2}$AP)=$\sqrt{2}$•$\frac{\sqrt{10}}{2}$=$\sqrt{5}$

點評 本題考查了正方形的性質(zhì)、正方形的內(nèi)切圓的性質(zhì)、勾股定理、等腰直角三角形的性質(zhì);熟練掌握正方形的性質(zhì),并能進(jìn)行推理計算是解決問題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知一個三棱錐的三視圖如圖所示,則該三棱錐的體積為$\frac{2\sqrt{3}}{3}$.外接球半徑為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.今年是我校成立111周年的一年,那么十進(jìn)制的111化為二進(jìn)制是(  )
A.1 101 101B.11 011 011C.1 101 111D.1 011 100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知約束條件$\left\{{\begin{array}{l}{x+2y≤10}\\{2x+y≥6}\\{y≥0}\end{array}}$.
(1)在如圖網(wǎng)格線內(nèi)建立坐標(biāo)系,并畫出可行域;
(2)求目標(biāo)函數(shù)z=$\frac{2x+y+3}{x+1}$的最值并指出取得最值時的最優(yōu)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知圓(x-1)2+(y+1)2=16的一條直徑恰好經(jīng)過直線x-2y+3=0被圓所截弦的中點,則該直徑所在直線的方程為2x+y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2x(x∈R),
(1)解不等式f(x)-f(2x)>16-9×2x;
(2)若函數(shù)q(x)=f(x)-f(2x)-m在[-1,1]上有零點,求m的取值范圍;
(3)若函數(shù)f(x)=g(x)+h(x),其中g(shù)(x)為奇函數(shù),h(x)為偶函數(shù),若不等式2ag(x)+h(2x)≥0對任意x∈[1,2]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.根據(jù)如圖所示的算法語句,可知輸出的結(jié)果S是( 。
A.11B.9C.7D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在正方體A1B1C1D1-ABCD中,
(1)在正方體的12條棱中,與棱AA1是異面直線的有幾條(只要寫出結(jié)果)
(2)證明:AC∥平面A1BC1;
(3)證明:AC⊥平面BDD1B1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$cos({α+\frac{π}{6}})=\frac{1}{3}$,$α∈[{0,\frac{π}{2}}]$,那么cosα等于(  )
A.$\frac{2\sqrt{2}-\sqrt{3}}{6}$B.$\frac{2\sqrt{2}+\sqrt{3}}{6}$C.$\frac{2\sqrt{3}-\sqrt{2}}{6}$D.$\frac{2\sqrt{3}+\sqrt{2}}{6}$

查看答案和解析>>

同步練習(xí)冊答案