1.求證:(1)$\sqrt{6}$+$\sqrt{7}$>2$\sqrt{2}$+$\sqrt{5}$;     (2)a2+b2+c2≥ab+ac+bc.

分析 (1)使用分析法證明;(2)利用基本不等式證明.

解答 證明:(1)要證:$\sqrt{6}$+$\sqrt{7}$>2$\sqrt{2}$+$\sqrt{5}$,
只需證:($\sqrt{6}$+$\sqrt{7}$)2>(2$\sqrt{2}+\sqrt{5}$)2,
即證:13+2$\sqrt{42}$>13+4$\sqrt{10}$,
即證:$\sqrt{42}$>2$\sqrt{10}$,
只需證:42>40,
顯然上式恒成立,
故$\sqrt{6}$+$\sqrt{7}$>2$\sqrt{2}$+$\sqrt{5}$.
(2)∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,
以上三式相加得:2a2+2b2+2c2≥2ab+2bc+2ac,
∴a2+b2+c2≥ab+ac+bc.

點評 本題考查了不等式的證明,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知ω>0,平面向量$\overrightarrow{m}$=(2sinωx,$\sqrt{3}$),$\overrightarrow{n}$=(2cos(ωx+$\frac{π}{3}$),1),函數(shù)f(x)=$\overrightarrow{m}•\overrightarrow{n}$的最小正周期是π.
( I)求f(x)的解析式和對稱軸方程;
( II)求f(x)在$[-\frac{π}{4},\frac{π}{6}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)集合M={y|y=|cos2x-sin2x|,x∈R},$N=\{x||\frac{2x}{{1-\sqrt{3}i}}|<1,i$為虛數(shù)單位,x∈R},則M∩N為{x|0≤x<1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.與函數(shù)y=10lg(x-1)的圖象相同的函數(shù)是( 。
A.y=x-1B.y=$\frac{{{x^2}-1}}{x+1}$C.y=|x-1|D.y=${(\frac{x-1}{{\sqrt{x-1}}})^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.直線l過點(2,1),且它的傾斜角是直線y=x+1的傾斜角的2倍,則直線l的方程為( 。
A.y=2x-3B.x=2C.y=1D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某漁場有一邊長為20m的正三角形湖面ABC(如圖所示),計劃筑一條筆直的堤壩DE將水面分成面積相等的兩部分,以便進行兩類水產(chǎn)品養(yǎng)殖試驗(D在AB上,E在AC上).
(1)為了節(jié)約開支,堤壩應(yīng)盡可能短,請問該如何設(shè)計?堤壩最短為多少?
(2)將DE設(shè)計為景觀路線,堤壩應(yīng)盡可能長,請問又該如何設(shè)計?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知復(fù)數(shù)z=(m-1)+(m2+2m-3)i,m≥0,
(Ⅰ)若z是純虛數(shù),求m的值;
(Ⅱ)若z+$\overline{z}$=2,求z;
( III)在復(fù)平面中,設(shè)復(fù)數(shù)z對應(yīng)的點為P,當m變化時,求動點P的軌跡的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.要得到函數(shù)y=sin2(x$-\frac{π}{6}$),x∈R的圖象,只需把函數(shù)f(x)=sin2x,x∈R的圖象(  )
A.向右平移$\frac{π}{6}$個單位B.向右平移$\frac{π}{12}$個單位
C.向左平移$\frac{π}{6}$個單位D.向左平移$\frac{π}{12}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若(2x-1)2017=a0+a1x+a2x2+…+a2017x2017,則a0+a1+2a2+…+2017a2017=4033.

查看答案和解析>>

同步練習冊答案