2.已知等差數(shù)列{an}的前n項和為Sn,且a2=2,S6=21
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=an•2n,求數(shù)列{bn}的前n項和Tn

分析 (1)設(shè)等差數(shù)列{an}的公差為d,利用等差數(shù)列的通項公式及其前n項和公式即可得出;
(2)bn=an•2n=n•2n.利用“錯位相減法”及其等比數(shù)列的前n項和公式即可得出.

解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,
∵a2=2,S6=21,
∴$\left\{\begin{array}{l}{{a}_{1}+d=2}\\{6{a}_{1}+15d=21}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=1}\end{array}\right.$,
∴an=1+(n-1)=n.
(2)bn=an•2n=n•2n
∴數(shù)列{bn}的前n項和Tn=2+2×22+3×23+…+n•2n
2Tn=22+2×23+…+(n-1)×2n+n•2n+1,
∴-Tn=2+22+23+…+2n-n•2n+1=$\frac{2({2}^{n}-1)}{2-1}$-n•2n+1=(1-n)•2n+1-2,
∴Tn=(n-1)×2n+1+2.

點評 本題考查了“錯位相減法”、等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知等差數(shù)列{an}滿足:a1=2,且a1、a2、a5成等比數(shù)列.
(1)求數(shù)列{an}的通項公式.
(2)記Sn為數(shù)列{an}的前n項和,是否存在正整數(shù)n,使得Sn>60n+800?若存在,求n的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)數(shù)列{an}的通項公式為an=4n-2
(1)設(shè)cn=$\frac{{a}_{n}+2}{{2}^{{a}_{n}}}$,求數(shù)列{cn}的前n項和Sn;
(2)設(shè)bn=$\frac{4}{{a}_{n}•{a}_{n+1}}$,Tn是數(shù)列{bn}的前n項和,求使得Tn<$\frac{m}{20}$對所有n∈N*都成立的最小正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知平行四邊形ABCD中,$\overrightarrow{AB}$與$\overrightarrow{AC}$對應(yīng)的復(fù)數(shù)分別是3+2i與1+4i,兩對角線AC與BD相交于P點.
(1)求$\overrightarrow{AD}$對應(yīng)的復(fù)數(shù);
(2)求$\overrightarrow{DB}$對應(yīng)的復(fù)數(shù);
(3)求△APB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.觀察式子:1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$,…,則可歸納出式子為( 。
A.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…<$\frac{1}{2n-1}$B.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…$\frac{1}{{n}^{2}}$<$\frac{1}{2n-1}$
C.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$D.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…$\frac{1}{{n}^{2}}$<$\frac{2n}{2n+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)曲線y=ax2在點(1,a)處的切線與直線2x-y-6=0平行,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.校運動會招聘志愿者,甲、乙、丙三名大學(xué)生躍躍欲試,已知甲能被錄用的概率是$\frac{2}{3}$,甲、乙兩人都不能被錄用的概率為$\frac{1}{12}$,丙、乙兩人都能被錄用的概率為$\frac{3}{8}$,且三人是否錄用相互獨立.
(1)求乙、丙兩人各自能被錄用的概率;
(2)求甲、乙、丙三人至少有兩人能被錄用的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,有一塊半徑為2a(a>0)的半圓形鋼板,計劃剪裁成等腰梯形ABCD的形狀,它的下底AB是⊙O的直徑,上底CD的端點在圓周上.記AD長為x,梯形周長為y.
(Ⅰ)求y關(guān)于x的函數(shù)解析式,并求出定義域;
(Ⅱ)由于鋼板有特殊需要,要求CD長不小于$\frac{7}{2}a$,在此條件下,求梯形周長y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,E,F(xiàn)分別為AB,AC的中點,則有EF∥BC.這個命題的大前提為( 。
A.三角形的中位線平行于第三邊B.三角形的中位線等于第三邊的一半
C.EF為中位線D.EF∥CB

查看答案和解析>>

同步練習(xí)冊答案