13.空間中四點(diǎn)可確定的平面有( 。
A.1個(gè)B.3個(gè)
C.4個(gè)D.1個(gè)或4個(gè)或無(wú)數(shù)個(gè)

分析 由已知條件分四點(diǎn)共線和四點(diǎn)不共線兩種情況分類討論,能求出空間中四點(diǎn)可確定的平面?zhèn)數(shù).

解答 解:空間中四點(diǎn)可確定的平面的個(gè)數(shù)有:
當(dāng)四個(gè)點(diǎn)共線時(shí),確定無(wú)數(shù)個(gè)平面;
當(dāng)四個(gè)點(diǎn)不共線時(shí),最多確定${C}_{4}^{3}$=4個(gè)平面,最少確定1個(gè)平面,
∴空間中四點(diǎn)可確定的平面有1個(gè)或4個(gè)或無(wú)數(shù)個(gè).
故選:D.

點(diǎn)評(píng) 本題考查平面?zhèn)數(shù)的確定,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意平面的基本性質(zhì)及推論的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.寫出滿足條件{1,3}∪A={1,3,5}的集合A的所有可能情況是{5},{1,5},{3,5},{1,3,5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知M為三角形ABC內(nèi)一點(diǎn),且滿足2$\overrightarrow{MA}$+$\overrightarrow{MB}$+$\overrightarrow{MC}$=$\overrightarrow{0}$,若∠AMB=$\frac{3π}{4}$,∠AMC=$\frac{2π}{3}$,|$\overrightarrow{MB}$|=2$\sqrt{3}$,則|$\overrightarrow{MC}$|=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.?dāng)?shù)列{an}中,a1=8,a4=2且滿足an+2=2an+1-an(n∈N+
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Sn=|a1|+|a2|+…+|an|,求Sn
(3)設(shè)bn=$\frac{n+1}{(n+2)^{2}(10-{a}_{n})^{2}}$(n∈N+),數(shù)列{bn}的前n項(xiàng)和為Tn,證明:對(duì)于任意的n∈N+,都有Tn<$\frac{5}{64}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若不重合的三條直線相交于一點(diǎn),則它們最多能確定3個(gè)平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知向量$\overrightarrow{a}$,$\overrightarrow$是兩個(gè)不共線的向量,且m$\overrightarrow{a}$-3$\overrightarrow$與向量$\overrightarrow{a}$+(2-m)$\overrightarrow$共線,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知角α的終邊在如圖所示的陰影區(qū)域內(nèi).
(1)用弧度制表示角α的集合;
(2)判定$\frac{α}{2}$+$\frac{7π}{12}$是第幾象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,已知⊙O′:x2+(y+$\frac{\sqrt{6}}{3}$m)2=4m2(m>0)及點(diǎn)M(0,$\frac{\sqrt{6}}{3}$m),在⊙O′上任取一點(diǎn)M′,連接MM′,并作MM′的中垂線l,設(shè)l與直線O′M′交于點(diǎn)P,若點(diǎn)M′取遍⊙O′上的點(diǎn).
(1)求點(diǎn)P的軌跡C的方程.
(2)設(shè)直線l:y=k(x+1)(k≠0)與軌跡C相交于A,B兩個(gè)不同的點(diǎn),與x軸相交于點(diǎn)D,若$\overrightarrow{AD}$=2$\overrightarrow{DB}$,求△OAB的面積取得最大值時(shí)軌跡C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列命題:①已知f(x)在[a,b]上連續(xù),且${∫}_{a}^$f(x)dx>0,則f(x)>0;②應(yīng)用微積分基本定理有${∫}_{1}^{2}$$\frac{1}{x}$dx=F(2)-F(1),則F(x)=ln(-x);③${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx=2${∫}_{0}^{\frac{π}{2}}$cosxdx;④${∫}_{0}^{2π}$|sinx|dx=4.其中正確的是( 。
A.①②③④B.③④C.②③④D.②③

查看答案和解析>>

同步練習(xí)冊(cè)答案