3.?dāng)?shù)列{an}中,對(duì)任意自然數(shù)n∈N*,恒有a1+a2+…+an=2n-1,則a12+a22+a32…+an2=$\frac{1}{3}$(4n-1).

分析 由題意易得an=2n-1,可得{an2}是1為首項(xiàng),4為公比的等比數(shù)列,由等比數(shù)列的求和公式可得.

解答 解:當(dāng)n=1時(shí),可得a1=21-1=1,
當(dāng)n≥2時(shí),an=(a1+a2+…+an)-(a1+a2+…+an-1
=(2n-1)-(2n-1-1)=2n-1,
當(dāng)n=1時(shí)上式也適合,∴an=2n-1,
∴$\frac{{{a}_{n+1}}^{2}}{{{a}_{n}}^{2}}$=$\frac{{2}^{2n}}{{2}^{2n-2}}$=4,
∴{an2}是1為首項(xiàng),4為公比的等比數(shù)列,
∴a12+a22+a32…+an2=$\frac{1×(1-{4}^{n})}{1-4}$=$\frac{1}{3}$(4n-1).
故答案為:$\frac{1}{3}$(4n-1).

點(diǎn)評(píng) 本題考查等比數(shù)列的求和公式,涉及等比數(shù)列的判定,考查運(yùn)算能力,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.(1+tan23°)(1+tan22°)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某城市現(xiàn)有人口總數(shù)為100萬(wàn)人,如果年自然增長(zhǎng)率為1.2%.
(1)寫出該城市人口總數(shù)(萬(wàn)元)與年數(shù)(年)的函數(shù)關(guān)系;
(2)計(jì)算大約多少年以后該城市人口將達(dá)到120萬(wàn)人(精確到1年);
(3)如果20年后該城市人口總數(shù)不超過(guò)120萬(wàn)人,那么年自然增長(zhǎng)率應(yīng)該控制在多少?(lg1.2≈0.079,lg1.012≈0.005,lg1.009≈0.0039)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為$ρ=2({sinθ+cosθ+\frac{1}{ρ}})$.
(1)求曲線C的參數(shù)方程;
(2)在曲線C上任取一點(diǎn)P(x,y),求的3x+4y最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.球O被平面α所截得的截面圓的面積為π,且球心到α的距離為$\sqrt{15}$,則球O的表面積為64π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.求函數(shù)f(x)=$\sqrt{{x}^{2}+1}$-x在[1,+∞)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1(-1,0)、F2(1,0),橢圓的離心率為$\frac{\sqrt{3}}{3}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)F2的直線l與橢圓C相交于A,B兩點(diǎn),求△F1AB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,左頂點(diǎn)到直線x+2y-2=0的距離為$\frac{{4\sqrt{5}}}{5}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l與橢圓C相交于A、B兩點(diǎn),若以AB為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O,試探究:點(diǎn)O到直線AB的距離是否為定值?若是,求出這個(gè)定值;否則,請(qǐng)說(shuō)明理由;
(Ⅲ)在(2)的條件下,試求△AOB面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若正三棱錐的正視圖與俯視圖如圖所示,則它的側(cè)視圖的面積為(  )
A.$\sqrt{3}$B.$\frac{3}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案