【題目】已知點(diǎn),是函數(shù)(,)圖象上的任意兩點(diǎn),且角的終邊經(jīng)過點(diǎn),若時(shí),的最小值為.
(1)求函數(shù)的解析式;
(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)f(x)=2sin(3x-);(2)[+,+], k∈Z;(3)[,+).
【解析】
試題(1)由題意,先求,根據(jù)的范圍,可求的值,再求出函數(shù)的周期,再利用周期公式求出的值,從而可求函數(shù)解析式;(2)由的范圍,求出的范圍,由正弦函數(shù)的性質(zhì)可得值域;(3)求出,分離參數(shù)可得,求出不等式右側(cè)最小值即可.
試題解析:(1)角的終邊經(jīng)過點(diǎn),,
∵,∴.
由時(shí),的最小值為,得,即,∴,
∴.
(2)∵,∴,故值域?yàn)?/span>.
(3)當(dāng)時(shí),,于是,等價(jià)于,由,得的最小值為,
所以,實(shí)數(shù)m的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過點(diǎn),,圓心在直線上
(1)求圓的標(biāo)準(zhǔn)方程;
(2)若直線與圓C相切且與軸截距相等,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=
(1)令N(x)=(1+x)2﹣1+ln(1+x),判斷并證明N(x)在(﹣1,+∞)上的單調(diào)性,并求N(0);
(2)求f(x)在定義域上的最小值;
(3)是否存在實(shí)數(shù)m,n滿足0≤m<n,使得f(x)在區(qū)間[m,n]上的值域也為[m,n]? (參考公式:[ln(1+x)′]= )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:,直線:.
(1)若直線被圓C截得的弦長為 ,求實(shí)數(shù)的值;
(2)當(dāng)t =1時(shí),由直線上的動(dòng)點(diǎn)P引圓C的兩條切線,若切點(diǎn)分別為A,B,則直線AB是否恒過一個(gè)定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,為線段的垂直平分線,與交與點(diǎn)為上異于的任意一點(diǎn).
求的值;
判斷的值是否為一個(gè)常數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了分析本校高中生的性別與是否喜歡數(shù)學(xué)之間的關(guān)系,在高中生中隨機(jī)地抽取了90名學(xué)生調(diào)查,得到了如下列聯(lián)表:
喜歡數(shù)學(xué) | 不喜歡數(shù)學(xué) | 總計(jì) | |
男 | 30 | ① | 45 |
女 | ② | 25 | 45 |
總計(jì) | ③ | ④ | 90 |
(1)求①②③④處分別對(duì)應(yīng)的值;
(2)能有多大把握認(rèn)為“高中生的性別與喜歡數(shù)學(xué)”有關(guān)?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記表示大于的整數(shù)的十位數(shù),例如,.已知,,都是大于的互不相等的整數(shù),現(xiàn)有如下個(gè)命題:
①若,則;②,且;
③若是質(zhì)數(shù),則也是質(zhì)數(shù);④若,,成等差數(shù)列,則,,可能成等比數(shù)列.
其中所有的真命題為( )
A. ② B. ③④ C. ①②④ D. ①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知從圓C:(x+1)2+(y﹣2)2=2外一點(diǎn)P(x1 , y1)向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,則當(dāng)|PM|取最小值時(shí)點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】元旦期間,某轎車銷售商為了促銷,給出了兩種優(yōu)惠方案,顧客只能選擇其中的一種,方案一:每滿萬元,可減千元;方案二:金額超過萬元(含萬元),可搖號(hào)三次,其規(guī)則是依次裝有個(gè)幸運(yùn)號(hào)、個(gè)吉祥號(hào)的一個(gè)搖號(hào)機(jī),裝有個(gè)幸運(yùn)號(hào)、個(gè)吉祥號(hào)的二號(hào)搖號(hào)機(jī),裝有個(gè)幸運(yùn)號(hào)、個(gè)吉祥號(hào)的三號(hào)搖號(hào)機(jī)各搖號(hào)一次,其優(yōu)惠情況為:若搖出個(gè)幸運(yùn)號(hào)則打折,若搖出個(gè)幸運(yùn)號(hào)則打折;若搖出個(gè)幸運(yùn)號(hào)則打折;若沒有搖出幸運(yùn)號(hào)則不打折.
(1)若某型號(hào)的車正好萬元,兩個(gè)顧客都選中第二中方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;
(2)若你評(píng)優(yōu)看中一款價(jià)格為萬的便型轎車,請(qǐng)用所學(xué)知識(shí)幫助你朋友分析一下應(yīng)選擇哪種付款方案.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com