2.在平面直角坐標(biāo)系xOy中,曲線C的方程為y=3+$\sqrt{-{x}^{2}+8x-15}$.
(1)寫出曲線C的一個參數(shù)方程;
(2)在曲線C上取一點P,過點P作x軸,y軸的垂線,垂足分別為A,B,求矩形OAPB的周長的取值范圍.

分析 (1)采用平方法,化簡曲線C,根據(jù)x=ρcosθ,y=ρsinθ即可得曲線C的一個參數(shù)方程;
(2)由(1)可知曲線C,曲線C上取一點P的參數(shù)坐標(biāo),利用三角函數(shù)的有界限求解矩形OAPB的周長的取值范圍

解答 解:(1)曲線C的方程為y=3+$\sqrt{-{x}^{2}+8x-15}$.
化簡可得:(y-3)2=-x2+8x-15,(y≥3,3≤x≤5)
即:x2+y2-8x-6y+24=0,
可知圓心為(4,3),半徑r=1,
曲線C的一個參數(shù)方程為:$\left\{\begin{array}{l}{x=4+cosθ}\\{y=3+sinθ}\end{array}\right.$(θ為參數(shù))
(2)由(1)可知曲線C圓心為(4,3),半徑r=1,(y≥3,3≤x≤5)的半圓.
設(shè)一點P的參數(shù)坐標(biāo)為(4+cosθ,3+sinθ)(0≤θ≤π),
過點P作x軸,y軸的垂線,垂足分別為A,B,
∴|PA|=3+sinθ,|PB|=4+cosθ
∴矩形OAPB的周長l=2|PA|+2|PB|=2|3+sinθ+4+cosθ|=2[7+$\sqrt{2}$sin($θ+\frac{π}{4}$)],(0≤θ≤π)
當(dāng)θ=$\frac{π}{4}$時,周長l最大為14+2$\sqrt{2}$.
當(dāng)θ=π時,周長l最小為12.
故得矩形OAPB的周長的取值范圍是[12,$14+2\sqrt{2}$]

點評 本題考查了普通方程化參數(shù)方程和利用參數(shù)坐標(biāo)轉(zhuǎn)化為三角函數(shù)的有界限問題求解范圍問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆湖南衡陽縣四中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

已知,則等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,三棱錐P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E為PC的中點,點F在PA上,且2PF=FA.
(1)求證:BE⊥平面PAC.
(2)求平面ABC與平面BEF所成的二面角的平面角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,在矩形ABCD中,AB=4,BC=6,四邊形AEFG為邊長為2的正方形,現(xiàn)將矩形ABCD沿過點的動直線l翻折的點C在平面AEFG上的射影C1落在直線AB上,若點C在抓痕l上的射影為C2,則$\frac{{C}_{1}{C}_{2}}{C{C}_{2}}$的最小值為( 。
A.6$\sqrt{5}$-13B.$\sqrt{5}$-2C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,側(cè)面PAB⊥底面ABCD,△PAB為正三角形.AB⊥AD,CD⊥AD,點E、M為線段BC、AD的中點,F(xiàn),G分別為線段PA,AE上一點,且AB=AD=2,PF=2FA.
(1)確定點G的位置,使得FG∥平面PCD;
(2)試問:直線CD上是否存在一點Q,使得平面PAB與平面PMQ所成銳二面角的大小為30°,若存在,求DQ的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=2,|$\overrightarrow{a}$-$\overrightarrow$|=3,則|$\overrightarrow{a}$|•|$\overrightarrow$|的取值范圍是[$\frac{5}{4}$,$\frac{13}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.我國古代數(shù)學(xué)名著《九章算術(shù)》有“米谷粒分”題:糧倉開倉收糧,有人送來米1558石,驗得米內(nèi)夾谷,抽樣取米一把,數(shù)得381粒內(nèi)夾谷42粒,則這批米內(nèi)夾谷約為( 。
A.146石B.172石C.341石D.1358石

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)$f(x)=\frac{a}{2}sinx+\frac{3}tanx+2cos\frac{π}{3}$,且f(2)=-1,則f(-2)=( 。
A.3B.2C.0D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系Oxy中,已知點F(1,0)和直線l:x=4,圓C與直線l相切,并且圓心C關(guān)于點F的對稱點在圓C上,直線l與x軸相交于點P.
(Ⅰ)求圓心C的軌跡E的方程;
(Ⅱ)過點F且與直線l不垂直的直線m與圓心C的軌跡E相交于點A、B,求△PAB面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案