分析 用定義法,由|PF1|+|PF2|=6,且|PF1|=2,易得|PF2|,再用余弦定理求解,即可求出∠F1PF2的正弦值.
解答 解:∵|PF1|+|PF2|=2a=6,
∴|PF2|=6-|PF1|=4.
在△F1PF2中,cos∠F1PF2=$\frac{4+16-4×7}{2×2×4}$=-$\frac{1}{2}$
∴∠F1PF2=120°,
∴sin∠F1PF2=$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.
點(diǎn)評(píng) 本題主要考查橢圓定義的應(yīng)用及焦點(diǎn)三角形問題,這類題是?碱愋,難度不大,考查靈活,特別是橢圓的定義和性質(zhì)考查的很到位.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0對(duì) | B. | 1對(duì) | C. | 2對(duì) | D. | 3對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{\frac{1}{2},1})$ | B. | $[{\frac{{\sqrt{3}}}{2},1})$ | C. | $({0,\frac{1}{2}}]$ | D. | $({0,\frac{{\sqrt{3}}}{2}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4x2-y2=1 | B. | 2x2-$\frac{{y}^{2}}{2}$=1 | C. | 3x2-$\frac{3{y}^{2}}{4}$=1 | D. | 5x2-$\frac{5{y}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com