分析 (1)設f(x)=ax2+bx+c,則f(x+1)-f(x)=a(x+1)2+b(x+1)+c-(ax2+bx+c)=2ax+a+b,根據(jù)對應項的系數(shù)相等可分別求a,b,c.
(2)對函數(shù)進行配方,結合二次函數(shù)在[-1,1]上的單調性可分別求解函數(shù)的最值.
解答 解:(1)由f(x)=ax2+bx+c,
則f(x+1)-f(x)=a(x+1)2+b(x+1)+c-(ax2+bx+c)=2ax+a+b
∴由題意得 $\left\{\begin{array}{l}{c=1}\\{2ax+a+b=2x}\end{array}\right.$恒成立,
∴$\left\{\begin{array}{l}{2a=2}\\{a+b=0}\\{c=1}\end{array}\right.$,得 $\left\{\begin{array}{l}{a=1}\\{b=-1}\\{c=1}\end{array}\right.$,
∴f(x)=x2-x+1;
(2)f(x)=x2-x+1=(x-$\frac{1}{2}$)2+$\frac{3}{4}$在[-1,$\frac{1}{2}$]單調遞減,在[$\frac{1}{2}$,1]單調遞增
∴f(x)min=f($\frac{1}{2}$)=$\frac{3}{4}$,f(x)max=f(-1)=3.
點評 本題主要考查了利用待定系數(shù)法求解二次函數(shù)的解析式,及二次函數(shù)在閉區(qū)間上的最值的求解,要注意函數(shù)在所給區(qū)間上的單調性,一定不能直接把區(qū)間的端點值代入當作函數(shù)的最值.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{2}{9}$,2) | B. | ($\frac{2}{9}$,$\frac{4}{9}$) | C. | (0,$\frac{2}{9}$)∪($\frac{4}{9}$,+∞) | D. | (0,$\frac{2}{9}$)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a≤0 | B. | a<-$\frac{3}{2}$或a=0 | C. | a<-$\frac{3}{2}$ | D. | a<0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com