14.若做直線運動的物體在[t0,t0+△t]時間內(nèi)位移的變化量△s=t03△t-3t02△t2+△t3,則該物體在t=t0時的瞬時速度v=t03

分析 由題意知,先計算出平均速度$\overline{v}$的化簡式,再由導(dǎo)數(shù)的物理意義求出導(dǎo)數(shù)即可得到瞬時速度

解答 解:∵做直線運動的物體在[t0,t0+△t]時間內(nèi)位移的變化量△s=t03△t-3t02△t2+△t3
∴$\overline{v}$=$\frac{△s}{△t}$=t03-3t02△t+△t2
∴$\underset{lim}{△t→0}$(t03-3t02△t+△t2)=t03,
故答案為:t03

點評 本題考查函數(shù)的平均變化率公式,注意平均速度與瞬時速度的區(qū)別,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件:f(0)=1,f(x+1)-f(x)=2x.
(1)求f(x);      
(2)求f(x)在區(qū)間[-1,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知點F的坐標(biāo)為(0,$\frac{3}{2}$),動圓P經(jīng)過點F且和直線y=-$\frac{3}{2}$相切.
(1)求動圓P的圓心軌跡W的方程;
(2)過點F的直線1,交軌跡W于A、B兩點,若|AB|=12,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下面各向量中,與向量$\overrightarrow{m}$=(3,2)垂直的是( 。
A.$\overrightarrow{a}$=(2,3)B.$\overrightarrow$=(-4,6)C.$\overrightarrow{c}$=(3,2)D.$\overrightarrowka0rgjh$=(-3,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.各項均為正數(shù)的數(shù)列{an}滿足:na2n+1=(n+1)a2n+anan+1,且a3=$\frac{3π}{4}$,若Sn為數(shù)列{an}的前n項和,則tanS2015等于( 。
A.-$\sqrt{3}$B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知$(lo{g}_{2}x)^{2}$-3log2x+2≤0,求函數(shù)y=4x-1-4•2x+2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)=ax(a>0且a≠1),若f(-3)>f(-π)則a的取值范圍是( 。
A.a>0B.a>1C.a<0D.0<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,已知|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=2,|$\overrightarrow{OC}$|=6,∠AOB=120°,$\overrightarrow{OA}$•$\overrightarrow{OC}$=0,設(shè)$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$(λ、μ∈R),則λ+3μ=8$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x(x2-a)+$\frac{1}{x}$.
(1)證明:對任意a∈R,都有導(dǎo)函數(shù)f′(x)是偶函數(shù);
(2)若g(x)=f(x)-$\frac{1}{x}$-$\frac{1}{9}$lnx,且a<0,討論函數(shù)g(x)的零點個數(shù).

查看答案和解析>>

同步練習(xí)冊答案