分析 (1)用誘導(dǎo)公式得出tan$\frac{10π}{7}$=$tan\frac{3π}{7}$;利用單位圓中的正切線表示得出AT1為$\frac{2π}{7}$的正切線,AT2為$\frac{3π}{7}$的正切線,比較大小即可.
(2)tan$\frac{6π}{5}$=tan$\frac{π}{5}$,tan(-$\frac{13π}{5}$)=tan$\frac{2π}{5}$,利用單位圓中的正切線比較大小.
解答 解:(1)tan$\frac{2π}{7}$,tan$\frac{10π}{7}$=$tan\frac{3π}{7}$;
根據(jù)單位圓中的正切線表示得出AT1為$\frac{2π}{7}$的正切線,
AT2為$\frac{3π}{7}$的正切線,
可知:AT2>AT1,
∴tan$\frac{2π}{7}$<tan$\frac{10π}{7}$;
(2)tan$\frac{6π}{5}$=tan$\frac{π}{5}$,tan(-$\frac{13π}{5}$)=tan$\frac{2π}{5}$,
根據(jù)單位圓中的正切線表示得出BC為$\frac{π}{5}$的正切線,
BD為$\frac{2π}{5}$的正切線,
可知:BD>BC,
∴tan$\frac{π}{5}$<tan$\frac{2π}{5}$;
即tan$\frac{6π}{5}$∠tan(-$\frac{13π}{5}$)
點(diǎn)評 本題考察了誘導(dǎo)公式的化簡運(yùn)用,正切線的畫法,屬于三角函數(shù)線的基礎(chǔ)題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 90° | D. | 60° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在(0,+∞)上是減函數(shù) | |
B. | 在(0,+∞)上是減函數(shù) | |
C. | 在(0,e)上是增函數(shù),在(e,+∞)上是減函數(shù) | |
D. | 在(0,e)上是減函數(shù),在(e,+∞)上是增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -10 | B. | -80 | C. | 40 | D. | 80 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com