【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)若, 是方程()的兩個(gè)不同的實(shí)數(shù)根,求證: .
【答案】(1)有極小值,無(wú)極大值.(2)見解析
【解析】試題分析:
(1)求出導(dǎo)函數(shù),再求出的零點(diǎn),確定零點(diǎn)兩側(cè)的正負(fù),得極值;
(2)關(guān)鍵是參數(shù)的轉(zhuǎn)換,由是某方程的解,代入得,兩式相減可解得,這樣要證的不等式即為證,這樣可用換元法,設(shè),且不妨役,于是有,只要證,此時(shí)又可轉(zhuǎn)化為求函數(shù)的最大值,求出的導(dǎo)數(shù), ,為確定的正負(fù)及零點(diǎn),可對(duì)函數(shù)求導(dǎo),利用導(dǎo)數(shù)確定它的單調(diào)性,最終確定的單調(diào)性,從而得出結(jié)論.
試題解析:
(1)依題意,
故當(dāng)時(shí), ,當(dāng)時(shí),
故當(dāng)時(shí),函數(shù)有極小值,無(wú)極大值.
(2)因?yàn)?/span>, 是方程的兩個(gè)不同的實(shí)數(shù)根.
∴兩式相減得,解得
要證: ,即證: ,即證: ,
即證,
不妨設(shè),令.只需證.
設(shè),∴;
令,∴,∴在上單調(diào)遞減,
∴ ,∴,∴在為減函數(shù),∴.
即在恒成立,∴原不等式成立,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,側(cè)面底面,底面為矩形,,為的中點(diǎn),.
(1)求證:;
(2)若與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在底面為等邊三角形的斜三棱柱中, ,四邊形為矩形,過(guò)作與直線平行的平面交于點(diǎn).
(1)證明: ;
(2)若直線與底面所成的角為,求二面角的余弦值 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0,a≠1,設(shè)p:函數(shù)y=loga(x+3)在(0,+∞)上單調(diào)遞減,q:函數(shù)y=x2+(2a-3)x+1的圖像與x軸交于不同的兩點(diǎn).如果p∨q真,p∧q假,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解電視對(duì)生活的影響,一個(gè)社會(huì)調(diào)查機(jī)構(gòu)就平均每天看電視的時(shí)間調(diào)查了某地10000位居民,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖(如圖),為了分析該地居民平均每天看電視的時(shí)間與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10000位居民中再用分層抽樣抽出100位居民做進(jìn)一步調(diào)查,則在(小時(shí))時(shí)間段內(nèi)應(yīng)抽出的人數(shù)是( )
A.25B.30C.50D.75
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在學(xué)校開展的綜合實(shí)踐活動(dòng)中,某班進(jìn)行了小制作評(píng)比,作品上交時(shí)間為5月1日至30日,評(píng)委會(huì)把同學(xué)們上交作品的件數(shù)按照5天一組分組統(tǒng)計(jì),繪制了頻率分布直方圖(如圖所示).已知從左到右各長(zhǎng)方形的高的比為2:3:4:6:4:1,第三組的頻數(shù)為12,請(qǐng)解答下列各題.
(1)本次活動(dòng)共有多少件作品參加評(píng)比?
(2)哪組上交的作品數(shù)量最多?有多少件?
(3)經(jīng)過(guò)評(píng)比,第四組和第六組分別有10件2件作品獲獎(jiǎng),問(wèn)這兩組哪一組獲獎(jiǎng)率較高?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在相同條件下各射靶10次,每次射靶的成績(jī)情況如圖所示:
(1)填寫下表:
平均數(shù) | 方差 | 中位數(shù) | 命中9環(huán)及以上 | |
甲 | 7 | 1.2 | 1 | |
乙 | 5.4 | 3 |
(2)請(qǐng)從四個(gè)不同的角度對(duì)這次測(cè)試進(jìn)行①結(jié)合平均數(shù)和方差分析離散程度;②結(jié)合平均數(shù)和中位數(shù)分析誰(shuí)的成績(jī)好些;③結(jié)合平均數(shù)和命中9環(huán)及以上的次數(shù)看誰(shuí)的成績(jī)好些;④從折線圖上看兩人射靶命中環(huán)數(shù)及走勢(shì)分析誰(shuí)更有潛力.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】.口袋中有質(zhì)地、大小完全相同的5個(gè)球,編號(hào)分別為1,2,3,4,5,甲、乙兩人玩一種游戲:甲先摸出一個(gè)球,記下編號(hào),放回后乙再摸一個(gè)球,記下編號(hào),如果兩個(gè)編號(hào)的和為偶數(shù)算甲贏,否則算乙贏.
(Ⅰ)求甲贏且編號(hào)的和為6的事件發(fā)生的概率;
(Ⅱ)這種游戲規(guī)則公平嗎?試說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把標(biāo)號(hào)為1,2,3,4的四張卡片分發(fā)給甲、乙、丙、丁四個(gè)人,每人1張,事件A表示隨機(jī)事件“甲分得1號(hào)卡片”,事件B表示隨機(jī)事件“乙分得1號(hào)卡片”.
(1)分別指什么事件?
(2)事件A與事件B是否為互斥事件?若是互斥事件,則是否互為對(duì)立事件?若不是對(duì)立事件,請(qǐng)分別說(shuō)出事件A、事件B的對(duì)立事件.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com