【題目】已知單調(diào)遞增的等比數(shù)列滿足:.,的等差中項(xiàng).又?jǐn)?shù)列滿足:,.

1)求數(shù)列的通項(xiàng)公式;

2)若,且數(shù)列為等比數(shù)列,求的值;

3)若,且為數(shù)列的最小項(xiàng),求的取值范圍.

【答案】1;(2;(3.

【解析】

1)根據(jù)等比數(shù)列以及等差數(shù)列的性質(zhì)求出數(shù)列的通項(xiàng)公式即可;

2)代入的值,設(shè)出數(shù)列的公比,得到關(guān)于公比和和的方程組,解出即可;

3)求出數(shù)列的通項(xiàng)公式,結(jié)合函數(shù)的單調(diào)性以及為數(shù)列的最小項(xiàng),得到關(guān)于的不等式組,解出即可.

1)設(shè)等比數(shù)列的公比為

因?yàn)?/span>.,的等差中項(xiàng),

所以,

.

解得,(舍去).

所以.

2時(shí),

,

所以,

而數(shù)列是等比數(shù)列,設(shè)公比是

,

解得.

所以.

3)若

,

,其中

為數(shù)列的最小項(xiàng),而是遞增數(shù)列,

是遞減數(shù)列,故

故只需,即,解得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的

C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題中,真命題的個(gè)數(shù)是 (  )

①命題:“已知 ,“”是“”的充分不必要條件”;

②命題:“p且q為真”是“p或q為真”的必要不充分條件;

③命題:已知冪函數(shù)的圖象經(jīng)過點(diǎn)(2,),則f(4)的值等于;

④命題:若,則

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的短軸長(zhǎng)為,過點(diǎn)的直線傾斜角為.

1)求橢圓的方程;

2)是否存在過點(diǎn)且斜率為的直線,使直線交橢圓于兩點(diǎn),以為直徑的圓過點(diǎn)?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),,其中,為正實(shí)數(shù).

1)若的圖象總在函數(shù)的圖象的下方,求實(shí)數(shù)的取值范圍;

2)設(shè),證明:對(duì)任意,都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

2)若函數(shù)存在兩個(gè)零點(diǎn).

①實(shí)數(shù)的取值范圍;

②證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,過點(diǎn)的直線有兩個(gè)不同的交點(diǎn),線段的中點(diǎn)為,為坐標(biāo)原點(diǎn),直線與直線分別交直線于點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)求線段的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A與圓外切且與軸相切.

1)求圓心的軌跡的方程;

2)過作斜率為的直線交曲線,兩點(diǎn),

①若,求直線的方程;

②過兩點(diǎn)分別作曲線的切線,,求證:,的交點(diǎn)恒在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出“停課不停學(xué)”的口號(hào),鼓勵(lì)學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績(jī)與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,對(duì)高三年級(jí)隨機(jī)選取45名學(xué)生進(jìn)行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)的有19人,余下的人中,在檢測(cè)考試中數(shù)學(xué)平均成績(jī)不足120分的占,統(tǒng)計(jì)成績(jī)后得到如下列聯(lián)表:

分?jǐn)?shù)不少于120

分?jǐn)?shù)不足120

合計(jì)

線上學(xué)習(xí)時(shí)間不少于5小時(shí)

4

19

線上學(xué)習(xí)時(shí)間不足5小時(shí)

合計(jì)

45

1)請(qǐng)完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”;

2)①按照分層抽樣的方法,在上述樣本中從分?jǐn)?shù)不少于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到不足120分且每周線上學(xué)習(xí)時(shí)間不足5小時(shí)的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);

②若將頻率視為概率,從全校高三該次檢測(cè)數(shù)學(xué)成績(jī)不少于120分的學(xué)生中隨機(jī)抽取20人,求這些人中每周線上學(xué)習(xí)時(shí)間不少于5小時(shí)的人數(shù)的期望和方差.

(下面的臨界值表供參考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式其中

查看答案和解析>>

同步練習(xí)冊(cè)答案