【題目】已知函數(shù)

)設(shè),若的圖象與x軸恰有兩個不同的交點,求實數(shù)a的取值集合.

)求函數(shù)在區(qū)間上的最大值.

【答案】;ymax=

【解析】試題分析:(Ⅰ)分類討論,由恰有一解及有兩個不同的解求得;
(Ⅱ)分類討論,從而確定二次函數(shù)的單調(diào)性及最值,從而確定函數(shù)上的最大值.

試題解析:)由題意得:

2有兩個不同的解,且其中一解x=2;

綜上所述:

)(1)若≤0,即a≥0時,

函數(shù)y=|fx|[0,1]上單調(diào)遞增,

ymax=f1=2+a

2)若0<<1,即-2<a<0時,

此時=a2-4<0,且fx)的圖象的對稱軸在(01)上,且開口向上;

ymax=max{f(0),f(1)}=max{1,a+2}=

3)若≥1,即a≤-2時,

此時f1=2+a≤0,

ymax=max{f(0),-f(1)}=max{1,-a-2}=

綜上所述,ymax=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直四棱柱底面直角梯形,,,是棱上一點,,,,.

(1)求異面直線所成的角;

(2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)log2x (0<x<1),數(shù)列{an}滿足f(2an)2n(nN*)

(1) 求數(shù)列{an}的通項公式;

(2) 判斷數(shù)列{an}的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司在迎新年晚會上舉行抽獎活動,有甲、乙兩個抽獎方案供員工選擇;

方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率為.第一次抽獎,若未中獎,則抽獎結(jié)束.若中獎,則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進行第二次抽獎;若正面朝上,員工則須進行第二次抽獎,且在第二次抽獎中,若中獎,獲得獎金1000元;若未中獎,則所獲獎金為0元.

方案乙:員工連續(xù)三次抽獎,每次中獎率均為,每次中獎均可獲獎金400元.

(1)求某員工選擇方案甲進行抽獎所獲獎金(元)的分布列;

(2)某員工選擇方案乙與選擇方案甲進行抽獎,試比較哪個方案更劃算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解籃球愛好者小李的投籃命中率與打籃球時間之間的關(guān)系,下表記錄了小李某月1號到5號每天打籃球時間(單位:小時)與當天投籃命中率之間的關(guān)系:

時間

1

2

3

4

5

命中率

0.4

0.5

0.6

0.6

0.4

小李這5天的平均投籃命中率;用線性回歸分析的方法,預(yù)測小李該月6號打6小時籃球的投籃命中率.

附:線性回歸方程中系數(shù)計算公式, ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在原點,一個焦點為,且長軸與短軸長的比是

(1)求橢圓C的方程;

(2)設(shè)點在 橢圓C的長軸上,點P是橢圓上任意一點,當最小時,點P恰好落在橢圓的右頂點上,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(a<0).

(Ⅰ)當a=-3時,求f(x)的單調(diào)遞減區(qū)間;

(Ⅱ)若函數(shù)f(x)有且僅有一個零點,求實數(shù)a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題12分)根據(jù)國家環(huán)保部新修訂的環(huán)境空氣質(zhì)量標準》規(guī)定:居民區(qū)PM25年平均濃度不得超過35微克/立方米,PM25的24小時平均濃度不得超過75微克/立方米.某城市環(huán)保部門隨機抽取了一居民區(qū)去年20天PM25的24小時平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如下:

]

組別

PM2.5濃度(微克/立方米)

頻數(shù)(天)

頻率

第一組

3

0.15

第二組

12

0.6

第三組

3

0.15

第四組

2

0.1

)從樣本中PM25的24小時平均濃度超過50微克/立方米的5天中,隨機抽取2天,求恰好有一天PM25的24小時平均濃度超過75微克/立方米的概率;

)求樣本平均數(shù),并根據(jù)樣本估計總體的思想,從PM2.5年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進?說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)若,求的單調(diào)區(qū)間;

(2)若函數(shù)處有極值,請證明:對任意時,都有

查看答案和解析>>

同步練習(xí)冊答案