16.不等式(x+5)(3-2x)≥6的解集是( 。
A.{x|-$\frac{9}{2}$≤x≤1}B.{x|-1≤x≤$\frac{9}{2}$}C.{x|x≤-$\frac{9}{2}$或x≥1}D.{x|x≤-1或x≥$\frac{9}{2}$}

分析 把不等式化為一般形式,求出它的解集即可.

解答 解:不等式(x+5)(3-2x)≥6可化為
2x2+7x-9≤0,
即(x+1)(2x-9)≤0;
解這個(gè)不等式,得-1≤x≤$\frac{9}{2}$,
∴該不等式的解集是{x|-1≤x≤$\frac{9}{2}$}.
故選:B.

點(diǎn)評(píng) 本題考查了一元二次不等式的解法與應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.曲線y=2sinx(0≤x≤π)與x軸圍成的封閉圖形的面積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log}_2x,x>0\\ 3^x,x≤0\end{array}\right.$,
(1)畫(huà)出f(x)的函數(shù)圖象;
(2)若關(guān)于x的方程f(x)+x-a=0有兩個(gè)實(shí)數(shù)根,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列函數(shù)是偶函數(shù)且值域?yàn)閇0,+∞)的是( 。
①y=|x|;②y=x3;③y=2|x|;④y=x2+|x|
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知U=R,A={x|x2+px+12=0},B={x|x2-5x+q=0},若(∁UA)∩B={2},(∁UB)∩A={4},則A∪B=( 。
A.{2,3,4}B.{2.3}C.{2,4}D.{3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知a>0且a≠1,設(shè)命題p:函數(shù)f(x)=2-|x|-a在x∈R內(nèi)有兩個(gè)零點(diǎn),命題q:不等式|x-2|-|x+3|-4a2+12a-10<0對(duì)一切實(shí)數(shù)x∈R恒成立,如果“p∨q”為真,且“p∧q”為假,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知兩定點(diǎn)B(-3,0),C(3,0),△ABC的周長(zhǎng)等于16,則頂點(diǎn)A的軌跡方程為$\frac{x^2}{25}+\frac{y^2}{16}=1(y≠0)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y-4≤0\\ 2x-y-4≤0\\ x-y+2≥0\end{array}\right.$,則目標(biāo)函數(shù)z=2x+3y的最大值為( 。
A.11B.24C.36D.49

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)$y=\frac{1}{x+1}$的單調(diào)遞減區(qū)間為(-∞,-1)和(-1,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案