分析 根據(jù)分式函數(shù)的性質(zhì)進(jìn)行求解即可.
解答 解:將函數(shù)y=$\frac{1}{x}$的圖象向左平移一個單位得到$y=\frac{1}{x+1}$,
∵y=$\frac{1}{x}$的單調(diào)遞減區(qū)間為(-∞,0)和(0,+∞),
∴$y=\frac{1}{x+1}$的單調(diào)遞減區(qū)間為(-∞,-1)和(-1,+∞),
故答案為:(-∞,-1)和(-1,+∞).
點評 本題主要考查函數(shù)單調(diào)遞減區(qū)間的求解,根據(jù)分式函數(shù)的性質(zhì)是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-$\frac{9}{2}$≤x≤1} | B. | {x|-1≤x≤$\frac{9}{2}$} | C. | {x|x≤-$\frac{9}{2}$或x≥1} | D. | {x|x≤-1或x≥$\frac{9}{2}$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平面α內(nèi)任一向量$\overrightarrow{a}$,都有$\overrightarrow{a}$=λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$(λ,μ∈R) | |
B. | 若存在實數(shù)λ1,λ2,使λ1$\overrightarrow{{e}_{1}}$+λ2$\overrightarrow{{e}_{2}}$=0,則λ1=λ2=0 | |
C. | 若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共線,則空間任一向量$\overrightarrow{a}$,都有$\overrightarrow{a}$=λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$(λ,μ∈R) | |
D. | 若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共線,則平面任一向量$\overrightarrow{a}$,都有$\overrightarrow{a}$=λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$(λ,μ∈R) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | -$\sqrt{3}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com