7.下列說法正確的是( 。
①有向線段三要素是始點、方向、長度
②向量兩要素是大小和方向
③同向且等長的有向線段表示同一向量
④在平行四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$.
A.B.①②C.①②③D.①②③④

分析 根據(jù)有向線段的定義,向量的定義,以及向量的幾何意義便可判斷每個說法的正誤,從而找出正確選項.

解答 解:①始點、方向、長度可以確定一條有向線段;
即有向線段三要素是始點、方向、長度,∴該說法正確;
②根據(jù)向量的定義知,向量的兩要素是大小和方向,∴該說法正確;
③根據(jù)向量的定義知同向且等長的有向線段表示同一向量,∴該說法正確;
④∵$|\overrightarrow{AB}|=|\overrightarrow{DC}|$,且$\overrightarrow{AB}$與$\overrightarrow{DC}$方向相同,∴$\overrightarrow{AB}=\overrightarrow{DC}$;
∴該說法正確.
故選:D.

點評 考查有向線段、向量的定義,以及向量的幾何意義,平行四邊形的定義.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

20.下列集合中,A={x=2,y=1},B={2,1},C={(x,y)|(x-2)2+|y-1|=0},D=(x,y)|$\left\{\begin{array}{l}{x+y=3}\\{x-y=1}\end{array}\right.$},E={(x,y)|x=2且y=1},F(xiàn)={(x,y)|x=2或y=1},其中與集合{(2,1)}相等的集合共有3個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.計算:
(1)$\frac{1}{1×3}$+$\frac{1}{2×4}$+$\frac{1}{3×5}$+…+$\frac{1}{9×11}$;
(2)$\frac{1}{1×2×3}$+$\frac{1}{2×3×4}$+…+$\frac{1}{98×99×100}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx-ax2+(2-a)x.
(1)當a=2時,求函數(shù)f(x)在點(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若角α=$\frac{π}{3}$,則角α的終邊與單位圓的交點P的坐標為( 。
A.($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)B.($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$)C.(1,$\frac{\sqrt{3}}{2}$)D.(1,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知tanα=-4,求下列各式的值.
(1)cos2α-sin2α;
(2)$\frac{4sinα-2cosα}{3sinα+5cosα}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知不等式組為$\left\{\begin{array}{l}{y≥0}\\{y≥x}\\{y≤2-x}\end{array}\right.$,問:
(Ⅰ)點(x,y)滿足不等式,求:
(1)z=3x+2y的最大值;
(2)z=|4x+3y+1|的最大值;
(3)z=(x+1)2+(y+1)2的最大值;
(4)z=$\frac{2y}{3x+9}$的最大值;
(5)z=$\frac{{x}^{2}-{y}^{2}}{xy}$的最小值;
(6)z=x-y+|x+2y+3|的最大值.
(Ⅱ)點(a+b,a-b)滿足不等式,求2a+b的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知函數(shù)f(x)=sin(x-φ)且cos($\frac{2π}{3}$-φ)=cosφ,則函數(shù)f(x)的圖象的一條對稱軸是(  )
A.x=$\frac{5π}{6}$B.x=$\frac{7π}{12}$C.x=$\frac{π}{3}$D.x=$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年廣東清遠三中高二上學期月考一數(shù)學(文)試卷(解析版) 題型:選擇題

閱讀如下程序框圖,如果輸出,那么空白的判斷框中應填入的條件是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案