12.已知tanα=-4,求下列各式的值.
(1)cos2α-sin2α;
(2)$\frac{4sinα-2cosα}{3sinα+5cosα}$.

分析 由條件利用同角三角函數(shù)的基本關(guān)系,求得要求式子的值.

解答 解:(1)∵tanα=-4,∴cos2α-sin2α=$\frac{{cos}^{2}α{-sin}^{2}α}{{cos}^{2}α{+sin}^{2}α}$=$\frac{1{-tan}^{2}α}{1{+tan}^{2}α}$=$\frac{1-16}{1+16}$=-$\frac{15}{17}$,
(2)$\frac{4sinα-2cosα}{3sinα+5cosα}$=$\frac{4tanα-2}{3tanα+5}$=$\frac{-18}{-12+5}$=$\frac{18}{7}$.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

5.(1)若函數(shù)y=f(x)滿足f(a+x)=f(a-x),則函數(shù)f(x)的圖象關(guān)于直線x=a對稱.
(2)若函數(shù)y=f(x)滿足f(a+x)=f(b-x),則函數(shù)f(x)的圖象關(guān)于直線x=$\frac{a+b}{2}$對稱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.設(shè)α,β∈(0,π),sin(α+β)=$\frac{5}{13}$,tan$\frac{α}{2}$=$\frac{1}{2}$,則tanα=$\frac{4}{3}$,cosβ=-$\frac{16}{65}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若α終邊上一點的坐標是P(-3,6),則角α是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列說法正確的是( 。
①有向線段三要素是始點、方向、長度
②向量兩要素是大小和方向
③同向且等長的有向線段表示同一向量
④在平行四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$.
A.B.①②C.①②③D.①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知△ABC的面積為S,且S=$\overrightarrow{AB}$$•\overrightarrow{AC}$,若AB=1,AC=$\sqrt{5}$,則BC=( 。
A.1B.2C.$\sqrt{5}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)=e|x-a|,則“a=1”是“f(x)在區(qū)間[1,+∞)上為增函數(shù)”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知數(shù)列{an}、{bn},Sn為數(shù)列{an}的前n項和,向量$\overrightarrow{x}$=(1,bn),$\overrightarrow{y}$=(an-1,Sn),$\overrightarrow{x}$∥$\overrightarrow{y}$.
(1)若bn=2,求數(shù)列{an}通項公式;
(2)若bn=$\frac{n}{2}$,a2=0.證明:數(shù)列{an}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年廣東清遠三中高二上學期月考一數(shù)學(文)試卷(解析版) 題型:選擇題

設(shè),則( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案