考點(diǎn):數(shù)列的求和,等比數(shù)列的通項(xiàng)公式,等比關(guān)系的確定
專題:等差數(shù)列與等比數(shù)列
分析:(1)把已知的遞推式變形,得到
an+1+=(an+)2,兩邊取對(duì)數(shù)后得數(shù)列{lg(a
n+
)}是等比數(shù)列,求其通項(xiàng)公式后可得數(shù)列{a
n}的通項(xiàng)公式;
(2)直接利用等比數(shù)列的前n項(xiàng)和公式得答案.
解答:
證明:(1)由a
n+1=a
n2+a
n-
,得
an+1+=(an+)2,
∴
lg(an+1+)=lg(an+)2=2lg(an+),
∴
=2.
則數(shù)列{lg(a
n+
)}是以
lg(a1+)=lg為首項(xiàng),以2為公比的等比數(shù)列,
∴
lg(an+)=
(lg)•2n-1,即
an+=()2n-1,
∴
an=()2n-1-;
(2)∵數(shù)列{lg(a
n+
)}是以
lg(a1+)=lg為首項(xiàng),以2為公比的等比數(shù)列,
∴
Sn=n•lg+=lg()n+n2-n.
點(diǎn)評(píng):本題考查了等比關(guān)系的確定,考查了等比數(shù)列的通項(xiàng)公式與等比數(shù)列的前n項(xiàng)和,是中檔題.