A. | $\frac{57}{25}$ | B. | $\frac{24}{25}$ | C. | -$\frac{57}{25}$ | D. | -$\frac{24}{25}$ |
分析 根據(jù)題意可知每個(gè)直角三角形的長(zhǎng)直角邊為cosθ,短直角邊為sinθ,小正方形的邊長(zhǎng)為cosθ-sinθ,先利用小正方形的面積求得∴(cosθ-sinθ)2的值,根據(jù)θ為直角三角形中較小的銳角,判斷出cosθ>sinθ,求得cosθ-sinθ的值,進(jìn)而求得2cosθsinθ利用配方法求得(cosθ+sinθ)2的進(jìn)而求得cosθ+sinθ,利用平方差公式把sin2θ-cos2θ展開(kāi)后,把cosθ+sinθ和cosθ-sinθ的值代入即可求得答案.
解答 解:依題意可知拼圖中的每個(gè)直角三角形的長(zhǎng)直角邊為cosθ,短直角邊為sinθ,小正方形的邊長(zhǎng)為cosθ-sinθ,
∵小正方形的面積是$\frac{1}{25}$,
∴(cosθ-sinθ)2=$\frac{1}{25}$,
又θ為直角三角形中較小的銳角,
∴cosθ>sinθ,
∴cosθ-sinθ=$\frac{1}{5}$,
又∵(cosθ-sinθ)2=1-2sinθcosθ=$\frac{1}{25}$,
∴2cosθsinθ=$\frac{24}{25}$,
∴1+2sinθcosθ=$\frac{49}{25}$,
即(cosθ+sinθ)2=$\frac{49}{25}$,
∴cosθ+sinθ=$\frac{7}{5}$,
∴sin2θ-cos2θ=(cosθ+sinθ)(sinθ-cosθ)=-$\frac{7}{25}$.
∴cos2θ-sin2θ+2=2+$\frac{7}{25}$=$\frac{57}{25}$.
故選:A.
點(diǎn)評(píng) 本題主要考查了三角函數(shù)的化簡(jiǎn)求值,同角三角函數(shù)的基本關(guān)系.考查了學(xué)生綜合分析推理和基本的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=±$\frac{4}{3}$x | B. | y=±$\frac{\sqrt{3}}{2}$x | C. | y=±$\frac{9}{16}$x | D. | y=±$\frac{3}{4}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 共線向量的夾角為0°或180° | |
B. | 長(zhǎng)度相等的向量叫做相等向量 | |
C. | 共線向量就是向量所在的直線在同一直線上 | |
D. | 零向量沒(méi)有方向 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com