14.設(shè)函數(shù)f(x)=$\frac{{\sqrt{2}cos({x-\frac{π}{4}})+6{x^2}+x}}{{6{x^2}+cosx}}$的最大值為M,最小值為m,則M與m滿足的關(guān)系是( 。
A.M-m=2B.M+m=2C.M-m=4D.M+m=4

分析 由題意可得f(x)-1=$\frac{sinx+x}{{6x}^{2}+cosx}$ 為奇函數(shù),它的最大值為M-1,最小值為m-1,由此求得M+m的值.

解答 解:函數(shù)f(x)=$\frac{{\sqrt{2}cos({x-\frac{π}{4}})+6{x^2}+x}}{{6{x^2}+cosx}}$=$\frac{{6x}^{2}+cosx+sinx+x}{{6x}^{2}+cosx}$=1+$\frac{sinx+x}{{6x}^{2}+cosx}$,
故f(x)-1=$\frac{sinx+x}{{6x}^{2}+cosx}$ 為奇函數(shù),它的最大值為M-1,最小值為m-1,故M-1+m-1=0;
∴M+m=2,
故選:B.

點(diǎn)評 本題考查了函數(shù)的奇偶性的應(yīng)用,注意化簡構(gòu)造新函數(shù),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,△ADM是等腰直角三角形,AD⊥DM,四邊形ABCM是直角梯形,AB⊥BC,MC⊥BC,且AB=2BC=2CM=2,平面ADM⊥平面ABCM.
(1)求證:AD⊥BD;
(2)若點(diǎn)E是線段DB上的一動(dòng)點(diǎn),問點(diǎn)E在何位置時(shí),三棱錐M-ADE的體積為$\frac{\sqrt{2}}{12}$?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某企業(yè)人力資源科有8名工作人員,其中男5名,女3名.
(1)要選3名假日值班,有多少種不同選法?
(2)要選3名假日值班,至少有1名男性,有多少種不同選法?
(3)要選3名假日值班,至少有1名男性,1名女性,問有多少種不同的選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某公司對銷售人員獎(jiǎng)勵(lì)方案如下:①銷售利潤不超過10萬元時(shí),按銷售利潤的5%獎(jiǎng)勵(lì).②銷售利潤超過10萬元時(shí),超出部分為a萬元,其超出部分按2log3(a+2)獎(jiǎng)勵(lì).當(dāng)銷售利潤為x萬元時(shí),銷售人員的獎(jiǎng)勵(lì)為y萬元,求y關(guān)于x的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,若a2+b2=2c2,則$\frac{{{{sin}^2}A+{{sin}^2}B}}{{{{sin}^2}C}}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.六個(gè)人從左到右排成一行,最右端只能排甲或乙,最左端不能排乙,則不同的排法種數(shù)共有( 。
A.192B.216C.240D.288

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.解下列方程(組):
(1)x3+x2+20=1-27x-8x2;
(2)$\left\{\begin{array}{l}{\frac{1}{3}y=2{x}^{2}-4x}\\{y={x}^{3}-8}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知0<β<α<$\frac{π}{2}$,tanα=4$\sqrt{3}$,cos(α-β)=$\frac{13}{14}$.
(1)求sin2α的值;
(2)求β的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.△ABC的內(nèi)角A,B,C所對的邊分別是a,b,c,若a>b且tanB•tanC=-1,則$\frac{c}$的取值范圍是(0,$\frac{\sqrt{3}}{3}$).

查看答案和解析>>

同步練習(xí)冊答案