16.已知命題p:?x∈[0,3],a≥2x-2,命題q:?x∈R,x2+4x+a=0,若命題“p∧q”是真命題,則實數(shù)a的值為4.

分析 結(jié)合一次函數(shù)、二次函數(shù)的性質(zhì)分別求出關(guān)于命題p,q的a的范圍,從而求出a的范圍.

解答 解:設(shè)f(x)=2x-2,(0≤x≤3),
∴當(dāng)x=3時,f(x)max=f(3)=4,
由已知得:命題P:a≥4,
由命題q:△=16-4a≥0,即a≤4,
又命題“p∧q”是真命題,
∴a≥4且a≤4成立,即a=4,
故答案為:4.

點評 本題考查了復(fù)合命題的判斷,考查二次函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=lg$\frac{2x}{ax+b}$,f(1)=0,當(dāng)x>0時,恒有f(x)-f($\frac{1}{x}$)=lgx.
(1)求f(x)的表達式及定義域;
(2)若方程f(x)=lgt有解,求實數(shù)t的取值范圍;
(3)若方程f(x)=lg(8x+m)的解集為∅,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若集合{x|mx2+mx+1<0,x∈R}=∅,則實數(shù)m的取值范圍是[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$f({\frac{a+2b}{3}})=\frac{f(a)+2f(b)}{3}$,f(1)=1,f(4)=7,則f(2016)=( 。
A.4028B.4029C.4030D.4031

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若tanα+$\frac{1}{tanα}$=$\frac{10}{3}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),則sin(2α+$\frac{π}{4}$)+2cos$\frac{π}{4}$sin2α=$\frac{4\sqrt{2}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知焦點在x軸上的橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{^{2}}$=1(b>0),F(xiàn)1,F(xiàn)2是它的兩個焦點,若橢圓上的點到焦點距離的最大值與最小值的差為2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)經(jīng)過右焦點F2的直線l與橢圓相交于A、B兩點,且$\overrightarrow{{F}_{2}A}$+2$\overrightarrow{{F}_{2}B}$=0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知F1,F(xiàn)2是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點,若雙曲線右支上存在一點($\frac{{a}^{2}}{c}$,-$\frac{ab}{c}$)與點F1關(guān)于直線y=-$\frac{bx}{a}$對稱,則該雙曲線的離心率為(  )
A.$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知拋物線y2=8x的焦點為F,過F作直線l交拋物線與A、B兩點,設(shè)|FA|=m,|FB|=n,則m.n的取值范圍( 。
A.(0,4]B.(0,14]C.[4,+∞)D.[16,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=x|2a-x|+2x,a∈R.
(1)若a=0,判斷函數(shù)y=f(x)的奇偶性,并加以證明;
(2)若函數(shù)f(x)在R上是增函數(shù),求實數(shù)a的取值范圍;
(3)若存在實數(shù)a∈[-2,2],使得關(guān)于x的方程f(x)-tf(2a)=0有三個不相等的實數(shù)根,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案