分析 (1)由已知中函數(shù),以構(gòu)造一個關(guān)于a,b方程組,解方程組求出a,b值,進而得到f(x)的表達式;
(2)由(1)中函數(shù)f(x)的表達式,轉(zhuǎn)化為一個方程,分離參數(shù),根據(jù)f(x)的定義域即可求出.
(3)根據(jù)對數(shù)的運算性質(zhì),可將方程f(x)=lg(8x+m),轉(zhuǎn)化為一個關(guān)于x的分式方程組,進而根據(jù)方程f(x)=lg(8x+m)的解集為∅,則方程組至少一個方程無解,或兩個方程的解集的交集為空集,分類討論后,即可得到答案
解答 解:(1)∵當x>0時,f(x)-f($\frac{1}{x}$)=lgx.
lg$\frac{2x}{ax+b}$-lg$\frac{\frac{2}{x}}{\frac{a}{x}+b}$=lgx,
即lg-lg=lgx,
即lg($\frac{2x}{ax+b}$•$\frac{a+bx}{2}$)=lgx,
$\frac{2x}{ax+b}$•$\frac{a+bx}{2}$=x.
整理得(a-b)x2-(a-b)x=0恒成立,
∴a=b,
又f(1)=0,
即a+b=2,從而a=b=1.
∴f(x)=lg$\frac{2x}{x+1}$,
∵$\frac{2x}{x+1}$>0,
∴x<-1,或x>0,
∴f(x)的定義域為(-∞,-1)∪(0,+∞)
(2)方程f(x)=lgt有解,
即lg$\frac{2x}{x+1}$=lgt,
∴t=$\frac{2x}{x+1}$,
∴x(2-t)=t,
∴x=$\frac{t}{2-t}$,
∴$\frac{t}{2-t}$<-1,或$\frac{t}{2-t}$>0,
解得t>2,或0<t<2,
∴實數(shù)t的取值范圍(0,2)∪(2,+∞),
(3)方程f(x)=lg(8x+m)的解集為∅,
∴l(xiāng)g$\frac{2x}{x+1}$=lg(8x+m),
∴$\frac{2x}{x+1}$=8x+m,
∴8x2+(6+m)x+m=0,
方程的解集為∅,故有兩種情況:
①方程8x2+(6+m)x+m=0無解,即△<0,得2<m<18,
②方程8x2+(6+m)x+m=0有解,兩根均在[-1,0]內(nèi),g(x)=8x2+(6+m)x+m
則$\left\{\begin{array}{l}{△≥0}\\{g(-1)≥0}\\{g(0)≥0}\\{-1≤\frac{-6-m}{16}≤0}\end{array}\right.$解得0≤m≤2
綜合①②得實數(shù)m的取值范圍是0≤m<18.
點評 本題考查的知識點是對數(shù)函數(shù)的圖象與性質(zhì),及對數(shù)函數(shù)單調(diào)性的綜合應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,+∞) | B. | [0,1] | C. | (0,1] | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1,2,3,4,6,7} | B. | {1,2,5} | C. | {3,5,7} | D. | {6} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com