A. | 170米 | B. | 110米 | C. | 95米 | D. | 80米 |
分析 利用正弦定理計算AC,得出△ABC的面積,根據(jù)面積求出C到AB的距離即可.
解答 解:在△ABC中,∠ACB=180°-75°-45°=60°,
由正弦定理得:$\frac{AB}{sin∠ACB}=\frac{AC}{sin∠ABC}$,
∴AC=$\frac{AB•sin∠ABC}{sin∠ACB}$=$\frac{120×\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$=40$\sqrt{6}$,
∴S△ABC=$\frac{1}{2}$AB•AC•sin∠CAB=$\frac{1}{2}×120×40\sqrt{6}×sin75°$≈5703.6,
∴C到AB的距離d=$\frac{{2S}_{△ABC}}{AB}$=$\frac{2×5703.6}{120}$≈95.
故選C.
點評 本題考查了解三角形的實際應(yīng)用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2n-1 | B. | 16[1-($\frac{1}{2}$)n] | C. | 2n-1-1 | D. | 16[1-($\frac{1}{2}$)n-1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com