【題目】在抗擊新冠肺炎疫情期間,很多人積極參與了疫情防控的志愿者活動.各社區(qū)志愿者服務(wù)類型有:現(xiàn)場值班值守,社區(qū)消毒,遠程教育宣傳,心理咨詢(每個志愿者僅參與一類服務(wù)).參與A,B,C三個社區(qū)的志愿者服務(wù)情況如下表:
社區(qū) | 社區(qū)服務(wù)總?cè)藬?shù) | 服務(wù)類型 | |||
現(xiàn)場值班值守 | 社區(qū)消毒 | 遠程教育宣傳 | 心理咨詢 | ||
A | 100 | 30 | 30 | 20 | 20 |
B | 120 | 40 | 35 | 20 | 25 |
C | 150 | 50 | 40 | 30 | 30 |
(1)從上表三個社區(qū)的志愿者中任取1人,求此人來自于A社區(qū),并且參與社區(qū)消毒工作的概率;
(2)從上表三個社區(qū)的志愿者中各任取1人調(diào)查情況,以X表示負責(zé)現(xiàn)場值班值守的人數(shù),求X的分布列;
(3)已知A社區(qū)心理咨詢滿意率為0.85,B社區(qū)心理咨詢滿意率為0.95,C社區(qū)心理咨詢滿意率為0.9,“,,”分別表示A,B,C社區(qū)的人們對心理咨詢滿意,“,,”分別表示A,B,C社區(qū)的人們對心理咨詢不滿意,寫出方差,,的大小關(guān)系.(只需寫出結(jié)論)
【答案】(1)(2)詳見解析(3)
【解析】
(1)利用古典概型概率公式求解即可;
(2)先求出A,B,C三個社區(qū)負責(zé)現(xiàn)場值班值守的概率,得出X的所有可能取值,并計算出相應(yīng)的概率,即可得出分布列;
(3)根據(jù)方差的意義進行判斷即可.
解:(1)記“從上表三個社區(qū)的志愿者中任取1人,此人來自于A社區(qū),并且參與社區(qū)消毒工作”為事件D,
.
所以從上表三個社區(qū)的志愿者中任取1人,此人來自于A社區(qū),并且參與社區(qū)消毒工作的概率為.
(2)從上表三個社區(qū)的志愿者中各任取1人,由表可知:A,B,C三個社區(qū)負責(zé)現(xiàn)場值班值守的概率分別為,,.
X的所有可能取值為0,1,2,3.
,,
,
.
X的分布列為:
X | 0 | 1 | 2 | 3 |
P |
(3)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)當a=-1時,
①求曲線y= f(x)在點(0,f(0))處的切線方程;
②求函數(shù)f(x)的最小值;
(II)求證:當時,曲線與有且只有一個交點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自湖北爆發(fā)新型冠狀病毒肺炎疫情以來,湖北某市醫(yī)護人員和醫(yī)療、生活物資嚴重匱乏,全國各地紛紛馳援.某運輸隊接到從武漢送往該市物資的任務(wù),該運輸隊有8輛載重為6t的A型卡車,6輛載重為10t的B型卡車,10名駕駛員,要求此運輸隊每天至少運送240t物資.已知每輛卡車每天往返的次數(shù)為A型卡車5次,B型卡車4次,每輛卡車每天往返的成本A型卡車1200元,B型卡車1800元,則每天派出運輸隊所花的成本最低為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P-ABCD,四邊形ABCD是邊長為3的正方形,平面平面,于點O,,點E在棱PB上,.
(1)當時,求直線AE與平面PCD所成角的正弦值;
(2)若二面角B-PC-D的余弦值為,求PO的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當吋,解不等式;
(2)設(shè).
①當時,若存在,使得,證明:;
②當時,討論的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《易經(jīng)》是中國傳統(tǒng)文化中的精髓,如圖是易經(jīng)八卦(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(""表示一根陽線,""表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有兩根陽線,四根陰線的概率為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為,斜率為的直線與橢圓交于,兩點,點在直線的左上方.
(1)若以為直徑的圓恰好經(jīng)過橢圓右焦點,求此時直線的方程;
(2)求證:的內(nèi)切圓的圓心在定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:
①“”是“”的必要不充分條件
②函數(shù)的最小值為2
③命題“,”的否定是“,”
④已知雙曲線過點,且漸近線為,則離心率,其中所有正確命題的編號是:_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知f(x)=x3+3ax2+bx+a2在x=-1時有極值0,求常數(shù)a,b的值;
(2)設(shè)函數(shù)g(x)=x3-6x+5,x∈R. 若關(guān)于x的方程g(x)=m有三個不同的實根,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com