已知不等式-2xy≤ax2+2y2,若對(duì)任意x∈[1,2]及y∈[-1,3]不等式恒成立,則實(shí)數(shù)a的范圍是( 。
A、0≤a≤
1
2
B、a≥0
C、a≥
1
2
D、a≥-
15
2
考點(diǎn):函數(shù)恒成立問題
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先將a分離出來,構(gòu)造了一個(gè)關(guān)于
y
x
的二次函數(shù),只需求出該函數(shù)的最小值即可.
解答: 解:因?yàn)閤∈[1,2],y∈[-1,3].
所以a≥
-2y2-2xy
x2
=-2[(
y
x
)2+
y
x
]

令t=
y
x
,結(jié)合x∈[1,2],y∈[-1,3].可知t∈[-1,3]
則問題轉(zhuǎn)化為a≥-2(t2+t)=-2(t+
1
2
)2+
1
2
恒成立,顯然當(dāng)t=-
1
2
∈[-1,3]
時(shí)等號(hào)右邊的函數(shù)取最小值
1
2

所以a
1
2
.為所求.
故選C.
點(diǎn)評(píng):本題體現(xiàn)了化雙元為單元的思想,從而將問題轉(zhuǎn)化為函數(shù)的最值問題解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3+bx2+cx是奇函數(shù),函數(shù)g(x)=x2+(c-2)x+5是偶函數(shù),則b+c=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在正項(xiàng)數(shù)列{an}中,Sn表示數(shù)列{an}前n項(xiàng)和且Sn=
1
4
an2+
1
2
an+
1
4
,n∈N+,數(shù)列{bn}滿足bn=
1
4Sn-1
,Tn為數(shù)列{bn}的前n項(xiàng)和.
(I) 求an,Sn;
(Ⅱ)是否存在最大的整數(shù)t,使得對(duì)任意的正整數(shù)n均有Tn
t
36
總成立?若存在,求出t;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖的程序框圖表示的算法的運(yùn)行結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某廠家準(zhǔn)備在2014年12月份舉行促銷活動(dòng),依以往的數(shù)據(jù)分析,經(jīng)測(cè)算,該產(chǎn)品的年銷售量x萬件(假設(shè)該廠生產(chǎn)的產(chǎn)品全部銷售),與年促銷費(fèi)用y萬元(0≤m≤4)近似滿足x=3-
k
m+1
(k為常數(shù)),如果不促銷,該產(chǎn)品的年銷售量只能是1萬件,已知2014年生產(chǎn)該產(chǎn)品的固定投入8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元.廠家將每件產(chǎn)品的銷售價(jià)格規(guī)定的每件產(chǎn)品生產(chǎn)平均成本的1.5倍,(產(chǎn)品生產(chǎn)平均成本指固定投入和再投入兩部分資金的平均成本).
(1)將2014年該產(chǎn)品的年利潤y萬元表示為年促銷費(fèi)用m萬元的函數(shù);
(2)該廠家2014年的年促銷費(fèi)用投入為多少萬元時(shí),該廠家的年利潤最大?并求出最大年利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
y≤1
y≥|x-1|
,則
x+2y+3
x+1
的取值范圍是( 。
A、[2,5]
B、[1,5]
C、[
7
3
,5]
D、[
7
3
,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=mx2-4x+1的圖象與x軸有公共點(diǎn),則m的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[-π,π]內(nèi)隨即取一個(gè)數(shù)記為x,則使得sinx≥
1
2
的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把長為8cm的矩形按虛線對(duì)折,按圖中的虛線剪出一個(gè)直角梯形,打開得到一個(gè)等腰梯形,剪掉部分的面積為6cm2,則打開后梯形的周長是(  )
A、(10+2
13
)cm
B、(10+
13
)cm
C、22cm
D、18cm

查看答案和解析>>

同步練習(xí)冊(cè)答案