8.已知直線l過圓x2+y2-6y+5=0的圓心,且與直線x+y+5=0平行,則l的方程是( 。
A.x+y-2=0B.x-y+2=0C.x+y-3=0D.x-y+3=0

分析 通過圓的一般方程求出圓的圓心坐標(biāo),求出直線的斜率,然后求出所求直線的方程即可.

解答 解:因?yàn)閳Ax2+y2-6y+5=0的圓心為(0,3),
與直線x+y+5=0平行的直線的斜率為:-1.
所以經(jīng)過圓x2+y2-6y+5=0的圓心且與直線x+y+5=0平行的直線方程是:y-3=-(x-0),即x+y-3=0.
故選:C.

點(diǎn)評 本題考查圓的一般方程求解圓的圓心坐標(biāo),直線的斜率與直線的點(diǎn)斜式方程的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.一條光線從點(diǎn)(-2,-3)射出,經(jīng)y軸反射后與圓(x+3)2+(y-2)2=1相切,求入射光線所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)集合A={(x,y)|y=1-3x},B={(x,y)|y=(1-2m2)x+5},其中x,y,m∈R,若A∩B=∅,則實(shí)數(shù)m的取值范圍是$±\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=ax3-bx+1,a,b∈R,若f(2)=-1,則f(-2)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.復(fù)數(shù)z=($\frac{\sqrt{2}i}{1-i}$)2的值為( 。
A.1B.iC.-1D.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=loga|x|在(-∞,0)上單調(diào)遞增,則f(-3)與f(2)的大小關(guān)系是(  )
A.f(-3)=f(2)B.f(-3)>f(2)C.f(-3)<f(2)D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.“cos2α=0”是“sinα+cosα=0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知△ABC是銳角三角形,角A,B,C所對的邊分別是a,b,c,
(1)若a,b,c成等比數(shù)列,求角B的最大值,并判斷此時(shí)△ABC的形狀;
(2)若A,B,C成等差數(shù)列,求sinA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=loga $\frac{x-3}{x+3}$,g(x)=1+loga(x-1),(a>0且a≠1),設(shè)f(x)和g(x)的定義域的公共部分為D,
(1)求集合D;
(2)當(dāng)a>1時(shí).若不等式g(x-$\frac{1}{6}$)-f(2x)>2在D內(nèi)恒成立,求a的取值范圍;
(3)是否存在實(shí)數(shù)a,當(dāng)[m,n]?D時(shí),f(x)在[m,n]上的值域是[g(n),g(m)],若存在,求實(shí)數(shù)a的取值范圍,若不存在說明理由.

查看答案和解析>>

同步練習(xí)冊答案