19.函數(shù)$y=\frac{{\sqrt{3x+4}}}{x}$的定義域為{x|x≥-$\frac{4}{3}$且x≠0}.

分析 根據(jù)函數(shù)的解析式,列出使解析式有意義的不等式組,求出解集即可.

解答 解:函數(shù)$y=\frac{{\sqrt{3x+4}}}{x}$,
∴$\left\{\begin{array}{l}{3x+4≥0}\\{x≠0}\end{array}\right.$,
解得x≥-$\frac{4}{3}$且x≠0;
∴y的定義域為{x|x≥-$\frac{4}{3}$且x≠0}.
故答案為:{x|x≥-$\frac{4}{3}$且x≠0}.

點(diǎn)評 本題考查了根據(jù)函數(shù)解析式求定義域的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.單位圓中弧長為1的弧所對圓心角的正弧度數(shù)是( 。
A.πB.1C.$\frac{π}{2}$D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若向量$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,$\overrightarrow a,\overrightarrow b$的夾角為120°,則$|{\overrightarrow a+\overrightarrow b}|$=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)x,y∈R,則“x≥1且y≥1”是“x2+y2≥2”的(  )
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x),當(dāng)年產(chǎn)量不足80千件時,C(x)=$\frac{1}{3}$x2+10x(萬元);當(dāng)年產(chǎn)量不小于80千件時,C(x)=51x+$\frac{10000}{x}$-1450(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部銷售完.
(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一產(chǎn)品的生產(chǎn)中所獲利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=2x2-4x-5.    
(1)當(dāng)x∈[-2,2]時,求函數(shù)f(x)的最值;
(2)當(dāng)x∈[t,t+1]時,求函數(shù)f(x)的最小值g(t);
(3)在第(2)問的基礎(chǔ)上,求g(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知等差數(shù)列{an}前9項的和為27,a10=8,則a100=( 。
A.97B.98C.99D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=sin(πx+φ)的部分圖象如圖所示,點(diǎn)B,C是該圖象與x軸的交點(diǎn),過點(diǎn)C的直線與該圖象交于D,E兩點(diǎn),則($\overrightarrow{BD}$+$\overrightarrow{BE}$)•($\overrightarrow{BE}$-$\overrightarrow{CE}$)的值為(  )
A.-1B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知α為第三象限角,$f(α)=\frac{{sin({α-\frac{π}{2}})cos({\frac{3π}{2}+α})tan({π-α})}}{{tan({-π-α})sin({-π-α})}}$
(1)化簡f(α);
(2)若$cos({α-\frac{3π}{2}})=\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

同步練習(xí)冊答案