【題目】如圖,四棱錐P-ABCD的底面ABCD是菱形,AC與BD交于點O,底面ABCD,點M為PC中點,,,.
(1)求異面直線AP與BM所成角的余弦值;
(2)求平面ABM與平面PAC所成銳二面角的余弦值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷并證明函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)寫出直線的直角坐標方程;
(2)設(shè)點的坐標為,若點是曲線截直線所得線段的中點,求的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+1,g(x)=4x+1,的定義域都是集合A,函數(shù)f(x)和g(x)的值域分別為S和T,
(1)若A=[1,2],求S∩T
(2)若A=[0,m]且S=T,求實數(shù)m的值
(3)若對于集合A的任意一個數(shù)x的值都有f(x)=g(x),求集合A.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品的三個質(zhì)量指標分別為x, y, z, 用綜合指標S =" x" + y + z評價該產(chǎn)品的等級. 若S≤4, 則該產(chǎn)品為一等品. 現(xiàn)從一批該產(chǎn)品中, 隨機抽取10件產(chǎn)品作為樣本, 其質(zhì)量指標列表如下:
產(chǎn)品編號 | A1 | A2 | A3 | A4 | A5 |
質(zhì)量指標(x, y, z) | (1,1,2) | (2,1,1) | (2,2,2) | (1,1,1) | (1,2,1) |
產(chǎn)品編號 | A6 | A7 | A8 | A9 | A10 |
質(zhì)量指標(x, y, z) | (1,2,2) | (2,1,1) | (2,2,1) | (1,1,1) | (2,1,2) |
(Ⅰ) 利用上表提供的樣本數(shù)據(jù)估計該批產(chǎn)品的一等品率;
(Ⅱ) 在該樣品的一等品中, 隨機抽取兩件產(chǎn)品,
(1) 用產(chǎn)品編號列出所有可能的結(jié)果;
(2) 設(shè)事件B為 “在取出的2件產(chǎn)品中, 每件產(chǎn)品的綜合指標S都等于4”, 求事件B發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】政府工作報告指出,2018年我國深入實施創(chuàng)新驅(qū)動發(fā)展戰(zhàn)略,創(chuàng)新能力和效率進一步提升;2019年要提升科技支撐能力,健全以企業(yè)為主體的產(chǎn)學(xué)研一體化創(chuàng)新機制.某企業(yè)為了提升行業(yè)核心競爭力,逐漸加大了科技投入;該企業(yè)連續(xù)6年來的科技投入(百萬元)與收益(百萬元)的數(shù)據(jù)統(tǒng)計如下:
科技投入 | 2 | 4 | 6 | 8 | 10 | 12 |
收益 |
根據(jù)散點圖的特點,甲認為樣本點分布在指數(shù)曲線的周圍,據(jù)此他對數(shù)據(jù)進行了一些初步處理,如下表:
其中,.
(1)(i)請根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程(保留一位小數(shù));
(ii)根據(jù)所建立的回歸方程,若該企業(yè)想在下一年的收益達到2億,則科技投入的費用至少要多少(其中)?
(2)乙認為樣本點分布在二次曲線的周圍,并計算得回歸方程為,以及該回歸模型的相關(guān)指數(shù),試比較甲、乙兩位員工所建立的模型,誰的擬合效果更好.
附:對于一組數(shù)據(jù),,…,,其回歸直線方程的斜率和截距的最小二乘估計分別為,,相關(guān)指數(shù):.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com