11.已知全集U=R,M={x|y=lg(1-$\frac{2}{x}$)},N={x|y=$\sqrt{x-1}$},則N∩(∁UM)=( 。
A.B.[1,2]C.[0,2]D.[2,+∞)

分析 求出兩個(gè)函數(shù)的定義域,可得集合M,N,結(jié)合集合的交集,并集,補(bǔ)集運(yùn)算法則,可得答案.

解答 解:由1-$\frac{2}{x}$>0得:x<0,或x>2,
故∁UM=[0,2],
由x-1≥0得:x≥1,
故N=[1,+∞),
∴N∩(∁UM)=[1,2]
故選:B

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是集合的交集,并集,補(bǔ)集運(yùn)算,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=|x-a|+|x+5-a|
(1)若不等式f(x)-|x-a|≤2的解集為[-5,-1],求實(shí)數(shù)a的值;
(2)若?x0∈R,使得f(x0)<4m+m2,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知三棱錐的外接球的表面積為25π,該三棱錐的三視圖如圖所示,三個(gè)視圖的外輪廓都是直角三角形,則其側(cè)視圖面積的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.若關(guān)于x的不等式|3x+2|+|3x-1|-t≥0的解集為R,記實(shí)數(shù)t的最大值為a.
(1)求a;
(2)若正實(shí)數(shù)m,n滿足4m+5n=a,求$y=\frac{1}{m+2n}+\frac{4}{3m+3n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.化簡(jiǎn)下列各式:
(1)sin2αcos2α+cos4α+sin2α;
(2)$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$(α為第二象限角).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在長(zhǎng)方體ABCD-A1B1C1D1中,B1C和C1D與底面所成的角分別為60°和45°,則異面直線B1C和C1D所成角的余弦值為( 。
A.$\frac{{\sqrt{6}}}{4}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{{\sqrt{2}}}{6}$D.$\frac{{\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.定義在R上的偶函數(shù)f(x)滿足:對(duì)任意的x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}<0$.則( 。
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.當(dāng)x>2時(shí),不等式x2-ax+9>0恒成立,則實(shí)數(shù)a的取值范圍為(-∞,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知一個(gè)圓錐的正視圖和側(cè)視圖都是邊長(zhǎng)為1的正三角形,則它的俯視圖的面積是( 。
A.πB.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案