15.己知雙曲線:$\frac{x^2}{a}$-$\frac{y^2}$=1(a>0,b>0)的一條漸進線為2x+y=0,一個焦點為($\sqrt{5}$,0),則a=1,b=4.

分析 由題意可得:-2=-$\sqrt{\frac{a}}$,a+b=5,聯(lián)立解出即可得出.

解答 解:∵雙曲線:$\frac{x^2}{a}$-$\frac{y^2}$=1(a>0,b>0)的一條漸進線為2x+y=0,一個焦點為($\sqrt{5}$,0),
∴-2=-$\sqrt{\frac{a}}$,a+b=5,
故答案分別為:1;4.

點評 本題考查了雙曲線的標準方程及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.過雙曲線$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}$=1左焦點F1的直線交曲線的左支于M,N兩點,F(xiàn)2為其右焦點,則|MF2|+|NF2|-|MN|的值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在銳角三角形ABC中,角A,B,C所對的邊分別為a,b,c且滿足cos2A-cos2B=cos($\frac{π}{6}$-A)cos($\frac{π}{6}$+A)
(1)求角B的值      
(2)若b=1,求a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在平面直角坐標系中O(0,0),P(1,2),將向量$\overrightarrow{OP}$按逆時針旋轉(zhuǎn)$\frac{π}{2}$后,得向量$\overrightarrow{OQ}$,則Q的坐標是(  )
A.(-2,1)B.(-1,2)C.(1,-2)D.(2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.滿足{1,2,3}⊆A?{1,2,3,4,5,6}的集合A的個數(shù)為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=ax3+x+1有極值,則a的取值范圍是a<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.6月23日15時前后,江蘇鹽城市阜寧、射陽等地突遭強冰雹、龍卷風(fēng)雙重災(zāi)害襲擊,風(fēng)力達12級.災(zāi)害發(fā)生后,有甲、乙、丙、丁4個輕型救援隊從A,B,C,D四個不同的方向前往災(zāi)區(qū).
已知下面四種說法都是正確的.
(1)甲輕型救援隊所在方向不是C方向,也不是D方向; 
(2)乙輕型救援隊所在方向不是A方向,也不是B方向; 
(3)丙輕型救援隊所在方向不是A方向,也不是B方向; 
(4)丁輕型救援隊所在方向不是A方向,也不是D方向.
此外還可確定:如果丙所在方向不是D方向,那么甲所在方向就不是A方向.有下列判斷:
①甲所在方向是B方向;②乙所在方向是D方向;③丙所在方向是D方向;④丁所在方向是C方向.
其中判斷正確的序號是③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.函數(shù)f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$,g(x)=f(x-1)+1,an=g($\frac{1}{n}$)+g($\frac{2}{n}$)+g($\frac{3}{n}$)+…+g($\frac{2n-1}{n}$),n∈N*
(1)求函數(shù){an}的通項公式;
(2)設(shè)bn=$\frac{1}{{a}_{n}a_{n+1}}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知向量$\overrightarrow{a}$與向量$\overrightarrow$垂直,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,則|2$\overrightarrow{a}$-$\overrightarrow$|=(  )
A.0B.$2\sqrt{2}$C.4D.8

查看答案和解析>>

同步練習(xí)冊答案