分析 設(shè)|BF2|=t,由橢圓的定義可得|BF1|=2a-t,再由中垂線的性質(zhì),可得|AB|=|BF2|=t,即有|AF1|=2t-2a,在△AF1F2中,cos∠AF1F2=$\frac{c}{a}$,在△BF1F2中由余弦定理,可得cos∠BF1F2=$\frac{2c}{a}$-$\frac{a}{c}$=-$\frac{c}{a}$,再由離心率公式計(jì)算即可得到所求值.
解答 解:設(shè)|BF2|=t,由橢圓的定義可得|BF1|=2a-t,
由B為AF2的中垂線上一點(diǎn),可得|AB|=|BF2|=t,
即有|AF1|=2t-2a,
又|AF1|=$\sqrt{^{2}+{c}^{2}}$=a,
解得t=$\frac{3a}{2}$,
即有|AF2|=|AF1|=a,|BF1|=$\frac{a}{2}$,|BF2|=$\frac{3a}{2}$,|F1F2|=2c,
在△AF1F2中,cos∠AF1F2=$\frac{c}{a}$,
可得cos∠BF1F2=-cos∠AF1F2=-$\frac{c}{a}$,
由余弦定理,可得cos∠BF1F2=$\frac{\frac{{a}^{2}}{4}+4{c}^{2}-\frac{9{a}^{2}}{4}}{2•\frac{a}{2}•2c}$=$\frac{2c}{a}$-$\frac{a}{c}$,
即有$\frac{2c}{a}$-$\frac{a}{c}$=-$\frac{c}{a}$,即為a2=3c2,
可得e=$\frac{c}{a}$=$\frac{\sqrt{3}}{3}$.
故答案為:$\frac{\sqrt{3}}{3}$.
點(diǎn)評 本題考查橢圓的離心率的求法,注意運(yùn)用橢圓的定義和中垂線的性質(zhì),結(jié)合三角形的余弦定理,考查化簡整理的運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{4}$-y2=1 | B. | x2-$\frac{y^2}{4}$=1 | C. | $\frac{x^2}{5}$-$\frac{y^2}{4}$=1 | D. | 5x2-$\frac{{5{y^2}}}{4}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 970 | B. | 1030 | C. | 997 | D. | 206 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com