【題目】已知是數(shù)列的前項(xiàng)和,對(duì)任意,都有;

1)若,求證:數(shù)列是等差數(shù)列,并求此時(shí)數(shù)列的通項(xiàng)公式;

2)若,求證:數(shù)列是等比數(shù)列,并求此時(shí)數(shù)列的通項(xiàng)公式;

3)設(shè),若,求實(shí)數(shù)的取值范圍.

【答案】1)證明見解析,;(2;(3.

【解析】

1)將代入,得,令,求出,然后令,由得出,兩式作差可得出數(shù)列的遞推公式,然后利用定義證明出數(shù)列是等差數(shù)列,確定該數(shù)列的首項(xiàng),即可求出

2)令求出,然后令,由得出,兩式相減得出數(shù)列的遞推公式,然后利用定義證明出數(shù)列為等比數(shù)列,確定該數(shù)列的首項(xiàng)和公比,即可求出

3)結(jié)合(1)(2)中的結(jié)論,討論、、、,結(jié)合條件,利用數(shù)列的單調(diào)性,即可得出實(shí)數(shù)的取值范圍.

1)將代入,得,即.

當(dāng)時(shí),則有,得;

當(dāng)時(shí), 得出,

上述兩式相減得

整理得,等式兩邊同時(shí)除以,即,

所以,數(shù)列是以首項(xiàng)為為首項(xiàng),以為公差的等差數(shù)列,

,因此,;

2)對(duì)任意,都有.

當(dāng)時(shí),,解得;

當(dāng)時(shí),由得出,

兩式相減得

化簡(jiǎn)得,

,

所以,數(shù)列是以為公比,以為首項(xiàng)的等比數(shù)列,則,因此,;

3,且.

當(dāng)時(shí),,當(dāng)時(shí),,不滿足條件;

,可得,

可得,

顯然時(shí),數(shù)列單調(diào)遞增,不滿足條件,.

當(dāng)時(shí),則有顯然成立;

當(dāng)時(shí),若,則數(shù)列的最大項(xiàng)為,

,即恒成立;

當(dāng)時(shí),數(shù)列的最大項(xiàng)為

滿足條件;

當(dāng)時(shí),,數(shù)列的最大項(xiàng)為,不滿足條件;

綜上所述,實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、B是海岸線OM、ON上兩個(gè)碼頭,海中小島有碼頭Q到海岸線OM、ON的距離分別為、,測(cè)得,,以點(diǎn)O為坐標(biāo)原點(diǎn),射線OMx軸的正半軸,建立如圖所示的直角坐標(biāo)系,一艘游輪以小時(shí)的平均速度在水上旅游線AB航行(將航線AB看作直線,碼頭Q在第一象限,航線BB經(jīng)過(guò)點(diǎn)Q.

1)問(wèn)游輪自碼頭A沿方向開往碼頭B共需多少分鐘?

2)海中有一處景點(diǎn)P(設(shè)點(diǎn)P平面內(nèi),,且),游輪無(wú)法靠近,求游輪在水上旅游線AB航行時(shí)離景點(diǎn)P最近的點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),實(shí)數(shù)

1)設(shè),判斷函數(shù)上的單調(diào)性,并說(shuō)明理由;

2)若不等式對(duì)恒成立,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,左項(xiàng)點(diǎn)為上頂點(diǎn)為.已知.

1)求橢圓的離心率;

2)設(shè)為橢圓上在第一象限內(nèi)一點(diǎn),射線與橢圓的另一個(gè)公共點(diǎn)為,滿足,直線軸于點(diǎn),的面積為.

(i)求橢圓的方程.

(ii)過(guò)點(diǎn)作不與軸垂直的直線交橢圓(異于點(diǎn))兩點(diǎn),試判斷的大小是否為定值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為常數(shù),),且數(shù)列是首項(xiàng)為,公差為的等差數(shù)列.

1)求證:數(shù)列是等比數(shù)列;

2)若,當(dāng)時(shí),求數(shù)列的前項(xiàng)和的最小值;

3)若,問(wèn)是否存在實(shí)數(shù),使得是遞增數(shù)列?若存在,求出的范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若曲線在點(diǎn)處的切線與曲線切于點(diǎn),求的值;

(Ⅲ)若恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù),關(guān)于的方程,給出下列結(jié)論

①存在這樣的實(shí)數(shù),使得方程有3個(gè)不同的實(shí)根

②不存在這樣的實(shí)數(shù),是的方程有4個(gè)不同的實(shí)根

③存在這樣的實(shí)數(shù),是的方程有5個(gè)不同的實(shí)根

④不存在這樣的實(shí)數(shù),是的方程有6個(gè)不同的實(shí)根

其中正確的個(gè)數(shù)是(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,是橢圓上的點(diǎn),過(guò)點(diǎn)的直線的方程為.

1)求橢圓的離心率;

2)當(dāng)時(shí),

i)設(shè)直線軸、軸分別相交于,兩點(diǎn),求的最小值;

ii)設(shè)橢圓的左、右焦點(diǎn)分別為,點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,求證:點(diǎn),三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某職稱晉級(jí)評(píng)定機(jī)構(gòu)對(duì)參加某次專業(yè)技術(shù)考試的100人的成績(jī)進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖(如圖所示).規(guī)定80分及以上者晉級(jí)成功,否則晉級(jí)失敗(滿分100分).

1)求圖中的值;

2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為晉級(jí)成功與性別有關(guān)?

晉級(jí)成功

晉級(jí)失敗

合計(jì)

16

50

合計(jì)

(參考公式:,其中

0.40

0.025

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

3)將頻率視為概率,從本次考試80分以上的所有人員中,按分層抽樣的方式抽取5個(gè)人的樣本;現(xiàn)從5人樣本中隨機(jī)選取2人,求選取的2人恰好都來(lái)自區(qū)間的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案