分析 (1)利用正弦定理把已知等式中的邊轉(zhuǎn)化成角的正弦,利用兩角和公式整理可求得tanB的值,結(jié)合角的范圍,進(jìn)而求得B.
(2)根據(jù)三角形面積求得ac的值,利用余弦定理,基本不等式即可解得邊b的最小值.
解答 解:(1)∵$bcosC+\frac{c}{{\sqrt{3}}}sinB=a$.
∴sinBcosC+$\frac{sinCsinB}{\sqrt{3}}$=sin(B+C)=sinBcosC+cosBsinC,
∴由sinC≠0,求得tanB=$\sqrt{3}$,
∴由B∈(0,π),可得:B=$\frac{π}{3}$.
(2)S=$\frac{1}{2}$acsinB=$\frac{\sqrt{3}}{4}$ac=$\sqrt{3}$,
∴ac=4,
∴b2=a2+c2-2accosB=a2+c2-ac≥2ac-ac=ac=4,(當(dāng)且僅當(dāng)a=c時(shí)等號(hào)成立),
∴邊b的最小值為2.
點(diǎn)評(píng) 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,基本不等式的應(yīng)用,正弦定理,余弦定理的在解三角形中的應(yīng)用.解題的關(guān)鍵是利用正弦定理對(duì)邊和角的問題進(jìn)行轉(zhuǎn)換,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若m∥n,n?α,則m∥α | |
B. | 若m,n為異面直線,且m?α,n?β,則α∥β | |
C. | 若m⊥n,α⊥β,m⊥α,則n⊥β | |
D. | 若m∥α,m∥β,α∩β=l,則m∥l |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,+∞) | B. | (-∞,0] | C. | [-1,+∞) | D. | (-∞,-1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)在區(qū)間(0,$\frac{π}{4}$)上單調(diào)遞增 | |
B. | f(x)的一個(gè)對(duì)稱中心為($\frac{π}{6}$,-$\sqrt{3}$) | |
C. | 當(dāng)x∈[0,$\frac{π}{2}$]時(shí),f(x)的值域?yàn)閇-2$\sqrt{3}$,0] | |
D. | 將f(x)的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的$\frac{1}{2}$,再向左平移$\frac{π}{6}$個(gè)單位后得到y(tǒng)=2sin(4x+$\frac{π}{3}$)-$\sqrt{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com