已知函數(shù)f(x)=
3-ax
a-1
(a≠1)
(1)若a>0,求f(x)的定義域;
(2)若f(x)在區(qū)間[0,1]上是減函數(shù),求實(shí)數(shù)a的取值范圍.
考點(diǎn):函數(shù)單調(diào)性的性質(zhì),函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的概念及應(yīng)用
分析:(1)函數(shù)定義域的常規(guī)求法,被開(kāi)方數(shù)為非負(fù)數(shù)即可;
(2)利用一次函數(shù)的單調(diào)性,列出不等式求解即可.
解答: 解:(1)由
3-ax
a-1
≥0得,
當(dāng)0<a<1時(shí),解得x≥
3
a
,此時(shí)f(x)的定義域?yàn)閇
3
a
,+∞);
當(dāng)a>1時(shí),解得x≤
3
a
,此時(shí)f(x)的定義域?yàn)椋?∞,
3
a
].
(2)∵f(x)=
3-ax
a-1
(a≠1)∴f(x)=
3
a-1
-
a
a-1
x
;
∵f(x)在區(qū)間[0,1]上是減函數(shù),
-
a
a-1
<0
f(1)≥0
a(a-1)>0
(a-1)(a-3)≤0
  解得1<a≤3.
點(diǎn)評(píng):考查函數(shù)定義域的求法及對(duì)函數(shù)的單調(diào)性性質(zhì)的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x||x-1|≤2},B={x|y
1
1-2x
},則A∩∁RB=( 。
A、(-1,0)
B、(0,3)
C、[-1,0]
D、[0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2+6x+8y+21=0,拋物線y2=8x的準(zhǔn)線為l,設(shè)拋物線上任意一點(diǎn)P到直線l的距離為m,則m+|PC|的最小值為( 。
A、5
B、
41
C、
41
-2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α為銳角,sin(α+
π
4
)=
2
10
,則sinα的值是(  )
A、
3
5
B、
7
2
10
C、-
2
10
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A在拋物線y2=4x上,且點(diǎn)A到直線x-y-1=0的距離為
2
,則點(diǎn)A的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(α)=
cos(
π
2
+α)•cos(2π-α)•sin(-α+
2
)
sin(-π-α)•sin(
2
+α)

(1)化簡(jiǎn)f(α);
(2)若α是第三象限角,且cos(α-
2
)=
1
5
,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在以AE=2為直徑的半圓周上,B、C,D分別為弧AE的四等分點(diǎn).
(Ⅰ)在弧AE上隨機(jī)取一點(diǎn)P,求滿足
OP
OA
上的投影大于
2
2
的概率;
(Ⅱ)在以O(shè)為起點(diǎn),再?gòu)腁,B,C,D,E這5個(gè)點(diǎn)中任取兩點(diǎn)分別為終點(diǎn)得到兩個(gè)向量,記這兩向量數(shù)量積為x,則x=
2
2
的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=axn+1+bxn(x>0),n為正整數(shù),a,b均為常數(shù),曲線y=f(x)在(1,f(1))處的切線方程為x+y-1=0.
(Ⅰ)求a、b值;
(Ⅱ)求函數(shù)f(x)的最大值;
(Ⅲ)證明:對(duì)任意的x∈(0,+∞)都有nf(x)<
1
e
.(e為自然對(duì)數(shù)的底)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

自A(4,0)引圓x2+y2=4的割線ABC,求弦BC中點(diǎn)P的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案