12.直線3x+$\sqrt{3}$y-4=0的傾斜角是( 。
A.30°B.60°C.120°D.150°

分析 化直線方程的一般式為斜截式,求得直線的斜率,由直線傾斜角的正切值等于斜率求得直線的傾斜角.

解答 解:化直線$3x+\sqrt{3}y-4=0$為,y=-$\sqrt{3}$x+$\frac{4\sqrt{3}}{3}$;
可得直線的斜率為$-\sqrt{3}$,
設(shè)直線$3x+\sqrt{3}y-4=0$的傾斜角為α(0°≤α<180°),
則tanα=$-\sqrt{3}$,∴α=120°.
故選:C.

點評 本題考查直線的傾斜角,考查了直線的傾斜角與斜率的關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列方程中表示相同曲線的是( 。
A.y=x,$\frac{y}{x}=1$B.y=2x,$y=2\sqrt{x^2}$C.|y|=|x|,$\sqrt{y}=\sqrt{x}$D.|y|=|x|,y2=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知f(x)=x2+ax在[0,1]上是單調(diào)遞減函數(shù),則實數(shù)a的取值范圍是( 。
A.(-∞,2]B.(-∞,-2]C.[0,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.20152015除以8的余數(shù)為( 。
A.1B.3C.5D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,在平行六面體ABCD-A1B1C1D1中,E.M.N.G分別是AA1,CD,CB,CC1的中點,求證:
(1)MN∥B1D1
(2)AC1∥平面EB1D1
(3)平面EB1D1∥平面BDG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,A′B′C′D′是邊長為1的正方形,又知它是某個四邊形按斜二測畫法畫出的直觀圖,請畫出該四邊形的原圖形,并求出原圖形面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知幾何體A-BCED的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形,已知幾何體A-BCED的體積為16.將直角三角形△ABD繞斜邊AD旋轉(zhuǎn)一周,則BD=2;該旋轉(zhuǎn)體的表面積為$\frac{32+8\sqrt{2}}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若二進制數(shù)100y011和八進制數(shù)x03相等,則x+y=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知雙曲線C的中心在原點,虛軸長為6,且以橢圓$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{5}$=1的焦點為頂點,則雙曲線C的方程為${x}^{2}-\frac{{y}^{2}}{9}=1$.

查看答案和解析>>

同步練習(xí)冊答案