分析 設(shè)出橢圓上任意一點(diǎn)的參數(shù)坐標(biāo),由兩點(diǎn)間的距離公式寫出|PM|,利用配方法通過三角函數(shù)的有界性求其最大值.
解答 解:∵橢圓$\frac{{x}^{2}}{2}$+y2=1,
設(shè)P點(diǎn)坐標(biāo)是($\sqrt{2}$cost,sint)
則|PM|=$\sqrt{(\sqrt{2}cost-1)^{2}+si{n}^{2}t}$=$\sqrt{co{s}^{2}t-2\sqrt{2}cost+2}$
=$\sqrt{(cost-\sqrt{2})^{2}}$=|cost-$\sqrt{2}$|∈[$\sqrt{2}-1$,1+$\sqrt{2}$].
∴當(dāng)cost=-1時(shí),|PM|取得最大值為:1$+\sqrt{2}$.
故答案為:1+$\sqrt{2}$.
點(diǎn)評 本題考查了橢圓的簡單幾何性質(zhì),考查了橢圓的參數(shù)方程,訓(xùn)練了函數(shù)最值的求法,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 21 | B. | 14 | C. | -14 | D. | -21 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{\sqrt{5}}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{2\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 周期為π,圖象關(guān)于點(diǎn)$({\frac{π}{12},0})$對稱的函數(shù) | |
B. | 最大值為2,圖象關(guān)于點(diǎn)$({\frac{π}{12},0})$對稱的函數(shù) | |
C. | 周期為2π,圖象關(guān)于點(diǎn)$({-\frac{π}{12},0})$對稱的函數(shù) | |
D. | 最大值為2,圖象關(guān)于直線$x=\frac{5π}{12}$對稱的函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k≥4 | B. | k≥5 | C. | k>6 | D. | k>5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com