如圖,正三棱柱(底面是正三角形且側(cè)棱垂直底面的三棱柱)ABC-A1B1C1中,
D是BC的中點,2A1A=AB=a.
(Ⅰ)求證:AD⊥B1D;
(Ⅱ)求三棱錐C-AB1D的體積.
考點:棱柱、棱錐、棱臺的體積,直線與平面垂直的性質(zhì)
專題:空間位置關(guān)系與距離
分析:(Ⅰ)由已知得平面B1C⊥平面ABC,AD⊥BC,由此能證明AD⊥B1D.
(Ⅱ)由VC-AB1D=VB1-ACD,利用等積法能求出三棱錐C-AB1D的體積.
解答: (Ⅰ)證明:∵ABC-A1B1C1是正三棱柱,
∴平面B1C⊥平面ABC,
又△ABC是正三角形,D是BC的中點,∴AD⊥BC,…(2分)
又平面ABC∩平面B1C=BC,AD⊥平面B1C,…(4分)
又B1D?平面B1C,∴AD⊥B1D.…(6分)
(Ⅱ)解:∵BB1⊥平面ACD,且BB1=
a
2

S△ACD=
1
2
SABC
=
1
4
×a×a×sin60°
=
3
8
a2
,
VC-AB1D=VB1-ACD=
1
3
S△ACD×BB1=
3
48
a3
.…(12分)
點評:本題考查異面直線垂直的證明,考查三棱錐的體積的求法,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面α,β和直線m,給出以下條件:①m∥α;②m⊥α;③m?α;④α∥β.要使m⊥β,則所滿足的條件是
 
. (填所選條件的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得
10
i=1
xi=80
,
10
i=1
yi
=20,
10
i=1
xiyi
=184,
10
i=1
x
2
i
=720.
1)求家庭的月儲蓄y關(guān)于月收入x的線性回歸方程
?
y
=
?
b
x+
?
a
;
2)若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲蓄.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
?
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,
?
a
=
.
y
-
?
b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
a
x
(a<0),g(x)=2lnx+bx,且函數(shù)g(x)在x=1處的切線斜率為2.
(1)若對[1,+∞)內(nèi)的一切實數(shù)x,不等式f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(2)當(dāng)a=-1時,求最大的正整數(shù)k,使得對[e,3]內(nèi)的任意k個實數(shù)x1、x2、…xk都有f(x1)+f(x2)+…+f(xk)≤16g(xk)成立;
(3)求證:ln(2n+1)<
n
2
+
n
i=1
6i+1
4i2-1
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A,B 兩個小島相距21海里,B 島在 A 島的正南方,現(xiàn)在甲船從 A 島出發(fā),以9海里/時的速度向 B 島行駛,而乙船同時以6海里/時的速度離開 B 島向南偏東60°方向行駛,行駛多少時間后,兩船相距最近?并求出兩船的最近距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|2014≤x≤2015},N={x|x<a,a∈Z},若“x∈M”是“x∈N”的充分而不必要條件.
(1)求整數(shù)a的最小值;
(2)在(1)的條件下,寫出命題“若x+2014≤a,則
1
x-1
≥a-2015”的否命題,并判斷否命題的真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從集合{1,2,3,4,5,6,7,8,9,10}中任取兩個數(shù),欲使取到的一個數(shù)大于k,另一個數(shù)小于k(其中k∈{5,6,7,8,9})的概率是
2
5
,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐O-ABC中,OA=OB=OC=2,且∠BOC=45°,則三棱錐O-ABC體積的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線的斜率為
1
2
,則該雙曲線的離心率為
 

查看答案和解析>>

同步練習(xí)冊答案