8.如圖的矩形長為5,寬為2,在矩形內(nèi)隨機(jī)地撒300顆黃豆,數(shù)得落在陰影部分的黃豆數(shù)為138顆,由此我們可以估計出陰影部分的面積約為4.6.

分析 由已知中矩形的長為5,寬2,我們易計算出矩形的面積,根據(jù)隨機(jī)模擬實驗的概念,我們易得陰影部分的面積與矩形面積的比例約為黃豆落在陰影區(qū)域中的頻率,由此我們構(gòu)造關(guān)于S陰影的方程,解方程即可求出陰影部分面積

解答 解:根據(jù)題意:黃豆落在陰影部分的概率是$\frac{138}{300}$,
矩形的面積為5×2=10,設(shè)陰影部分的面積為S陰影,
則有$\frac{{S}_{陰影}}{{S}_{矩形}}=\frac{138}{300}$,
∴S陰影=4.6,
故答案為:4.6.

點(diǎn)評 本題考查的知識點(diǎn)是幾何概型與隨機(jī)模擬實驗,利用陰影面積與矩形面積的比例約為黃豆落在陰影區(qū)域中的頻率,構(gòu)造關(guān)于S陰影的方程,是解答本題的關(guān)鍵

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)函數(shù)f(x)=ln(1+x)-ln(1-x),則f(x)是( 。
A.奇函數(shù),且在(0,1)上是增函數(shù)B.奇函數(shù),且在(0,1)上是減函數(shù)
C.偶函數(shù),且在(0,1)上是增函數(shù)D.偶函數(shù),且在(0,1)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為 $\frac{{\sqrt{2}}}{2}$,其左、右焦點(diǎn)分別是F1,F(xiàn)2,過點(diǎn)F1的直線l交橢圓C于E,G兩點(diǎn),且△EGF2的周長為4$\sqrt{2}$
(Ⅰ)求橢圓C的方程;     
(Ⅱ)若過點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn)A,B,設(shè)P為橢圓上一點(diǎn),且滿足 $\overrightarrow{OA}+\overrightarrow{OB}=t\overrightarrow{OP}$(O為坐標(biāo)原點(diǎn)),當(dāng)$|{\overrightarrow{PA}-\overrightarrow{PB}}|<\frac{{2\sqrt{5}}}{3}$時,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知m,n是兩條不同的直線,α,β是兩個不同的平面,則下列命題正確的是( 。
A.若m⊥α,α⊥β,則m∥βB.若m⊥n,n⊥β,則m∥β
C.若m⊥α,α⊥β,m與n異面,則n與β相交D.若m⊥α,n⊥β,m與n異面,則α與β相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在四棱錐B-AA1C1C中,AA1C1C是邊長為4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-C的余弦值; 
(Ⅲ)證明:在線段上BC1存在點(diǎn)D,使得AD⊥A1B,并求$\frac{BD}{B{C}_{1}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),b=(cos$\frac{1}{2}$x,-sin$\frac{1}{2}$x),且x∈[0,$\frac{π}{2}$].
(1)求$\overrightarrow{a}$•$\overrightarrow$及|$\overrightarrow{a}$+$\overrightarrow$|;
(2)若函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-2λ|$\overrightarrow{a}$+$\overrightarrow$|.
①當(dāng)λ=$\frac{1}{2}$時,求f(x)的最小值及最大值;
②試求f(x)的最小值g(λ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知ABCD-A1B1C1D1是棱長為a的正方體,求DA1與平面AA1BB1所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列雙曲線中,焦點(diǎn)在y軸上且漸近線方程為y=±2x的是(  )
A.x2-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{y}^{2}}{4}$-x2=1D.y2-$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,三角形PDC所在的平面與長方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.
(1)證明:BC∥平面PDA;
(2)證明:BC⊥PD;
(3)求點(diǎn)C 到平面PDA的距離.

查看答案和解析>>

同步練習(xí)冊答案