數(shù)列{a
n}的通項(xiàng)公式a
n=ncos
,其前n項(xiàng)和為S
n,則S
2012等于( 。
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:由已知得f(n)=cos
是以T=
=4為周期的周期函數(shù),由此能求出S
2012的值.
解答:
解:∵a
n=ncos
,
又∵f(n)=cos
是以T=
=4為周期的周期函數(shù),
∴a
1+a
2+a
3+a
4=(0-2+0+4)=2,a
5+a
6+a
7+a
8=(0-6+0+8)=2,
…
a
2009+a
2010+a
2011+a
2012=(0-2010+0+2012)=2,
S
2012=a
1+a
2+a
3+a
4+…+a
2012=(0-2+0+4)+(0-6+0+8)+…+(0-2010+0+2012)
=2×503=1006
故選:A.
點(diǎn)評(píng):本題考查數(shù)列的前2012項(xiàng)和的求法,解題時(shí)要認(rèn)真審題,注意數(shù)列的周期性的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知a+b+c>0,ab+bc+ac>0,abc>0,用反證法求證a>0,b>0,c>0的假設(shè)為( 。
A、a,b,c不全是正數(shù) |
B、a<0,b<0,c<0 |
C、a≤0,b>0,c>0 |
D、abc<0 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
從四種不同顏色中,選取顏色為英文good涂顏色,要求相鄰字母不能涂相同顏色,則有( )種涂色方法.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
若曲線xy=a(a≠0),則過(guò)曲線上任意一點(diǎn)的切線與兩坐標(biāo)軸所圍成的三角形的面積是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
若f(x)是偶函數(shù),且當(dāng)x∈[0,+∞)時(shí),f(x)=x-1,則f(x)<0的解集是( 。
A、(-1,0) |
B、(-∞,1) |
C、[0,1) |
D、(-1,1) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
若y=f(x)與y=3x的圖象關(guān)于直線y=x對(duì)稱,則( 。
A、f(x)=3x |
B、f(x)=log3x |
C、f(x)=3-x |
D、f(x)=log3(-x) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
若二項(xiàng)式(x+
)n的展開(kāi)式中所有項(xiàng)的系數(shù)之和為243,則展開(kāi)式中x
-4的系數(shù)是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
當(dāng)0<x<4時(shí),求y=x(8-2x)的最大值;已知x>0,y>0,且
+
=1,求x+y的最小值.
查看答案和解析>>